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ABSTRACT

Using a statistically rigorous analysis method, we place limits on the existence of an isotropic stochastic gravi-
tational wave background using pulsar timing observations. We consider backgrounds whose characteristic strain
spectra may be described as a power-law dependence with frequency. Such backgrounds include an astrophysical
background produced by coalescing supermassive black-hole binary systems and cosmological backgrounds due to
relic gravitational waves and cosmic strings. Using the best available data, we obtain an upper limit on the energy
density per unit logarithmic frequency interval of �SMBH

g 1/(8 yr)½ �h2 � 1:9 ; 10�8 for an astrophysical background
that is 5 times more stringent than the earlier limit of 1:1 ; 10�7 found by Kaspi and colleagues. We also provide
limits on a background due to relic gravitational waves and cosmic strings of �relic

g 1/(8 yr)½ �h2 � 2:0 ; 10�8 and
�cs

g 1/(8 yr)½ �h2 � 1:9 ; 10�8, respectively. All of the quoted upper limits correspond to a 0.1% false alarm rate to-
gether with a 95% detection rate. We discuss the physical implications of these results and highlight the future possi-
bilities of the Parkes Pulsar Timing Array project. We find that our current results can (1) constrain the merger rate of
supermassive binary black hole systems at high redshift, (2) rule out some relationships between the black hole mass
and the galactic halo mass, (3) constrain the rate of expansion in the inflationary era, and (4) provide an upper bound
on the dimensionless tension of a cosmic string background.

Subject headinggs: gravitational waves — pulsars: general

1. INTRODUCTION

Pulsar timing observations (see Lorimer &Kramer [2005] and
Edwards et al. [2006] for a review of the techniques) provide a
unique opportunity to study low-frequency (10�9 to 10�7 Hz) grav-
itational waves (GWs; e.g., Sazhin 1978; Detweiler 1979; Bertotti
et al. 1983; Foster & Backer 1990; Kaspi et al. 1994; Jenet et al.
2005). Sources in this low-frequency band include binary super-
massive black holes, cosmic superstrings, and relic gravitational
waves from the big bang (Jaffe & Backer 2003; Maggiore 2000).

An isotropic stochastic background can be described by its char-
acteristic strain spectrum hc( f ), which, for most models of inter-
est, can be written as a power-law dependence on frequency, f :

hc( f ) ¼ A
f

yr�1

� ��
: ð1Þ

Table 1 shows the expected values ofA and� for different types
of stochastic backgrounds that have been addressed in the litera-
ture. The characteristic strain is related to the one-sided power
spectrum of the induced timing residuals, P( f ), as

P( f ) ¼ 1

12�2

1

f 3
hc( f )

2; ð2Þ

and to�gw( f ), the energy density of the background per unit log-
arithmic frequency interval, as

�gw( f ) ¼
2

3

�2

H 2
0

f 2hc( f )
2; ð3Þ

where H0 is the Hubble constant. Note that the one-sided power
spectrum, P( f ), is defined so thatZ 1

0

P( f )df ¼ �2; ð4Þ

where �2 is the variance of the arrival time fluctuations, or timing
residuals, generated by the presence of the GW background.
Since�2 has the physical units of s2,P( f ) has the units of s2 Hz�1,
or s3.

Jenet et al. (2005) developed a technique to make a definitive
detection of a stochastic background of GWs by looking for cor-
relations between pulsar observations. It was shown that approx-
imately 20 pulsars would need to be observed with a timing
precision of �100 ns over a period of 5 years in order to make
such a detection if the GW background is at the currently predicted
level (Jaffe & Backer 2003; Wyithe & Loeb 2003; Enoki et al.
2004; Sesana et al. 2004). The Parkes Pulsar Timing Array (PPTA)
project (Hobbs 2005) is trying to achieve these ambitious goals, but
the currently available data sets do not provide the required sen-
sitivity for a detection. In this paper, we introduce a method to
place an upper bound on the power of a specified stochastic GW
background, using observations ofmultiple pulsars. Full technical
details of our implementation will be published in G. B. Hobbs
et al. (2007, in preparation). Here, this method is applied to data
(see x 2) from seven pulsars observed for the PPTA project com-
bined with an earlier publicly available data set.
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Upper limits have already been placed on the amplitude of any
such background of GWs. Using 8 years of observations for PSR
B1855+09, Kaspi et al. (1994) obtained a limit of �gh

2 � 1:1 ;
10�7, where H0 ¼ 100 h km s�1 Mpc�1, at the 95% confidence
level6 for the case when � ¼ �1 (i.e.,�gw is independent of fre-
quency). This work was continued by Lommen (2002), who used
17 years of observations to obtain�gh

2 < 2 ; 10�9. However, the
statistical method used for both of these analyses has been crit-
icized in the literature (see, for instance, Thorsett &Dewey 1996;
McHugh et al. 1996; Damour&Vilenkin 2005). In this paper, we
develop a frequentist technique, similar to that used by the LIGO
science collaboration (Abbott et al. 2006), to place an upper bound
on A, given � . The technique makes use of a statistic,�, defined
below, that is sensitive to red noise in the pulsar timing residual
data. Upper bounds on A are determined using� together with a
specified false alarm rate, Pf , and detection rate, Pd . Monte Carlo
simulations are used to determine these probabilities by generating
pulsar pulse times of arrival consistent with a GW background. All
of the upper limits quoted in this paper correspond toPf ¼ 0:1%
and Pd ¼ 95%.

2. OBSERVATIONS

We expect the isotropic background to generate timing resid-
uals with a ‘‘red’’ spectrum: a spectrumwith excess power at low
frequencies or, equivalently, long-timescale correlations in the
residuals. Therefore, we have restricted our analysis to those pul-
sars having formally white spectra: a spectrum with statistically
equal power at all frequencies or no correlations in the residuals.
This allows us to put the best upper limit on the background by
bounding the level of any red process in those data sets. Three
separate tests were used in order to determine the statistical prop-
erties of the data and to select data sets that are statistically white.
First, the normalized Lomb-Scargle periodogram was calculated
for each residual time series. No significant peaks were seen in
any of the data used. Second, the variance of the residuals was
shown to decrease as 1/n, where n is the number of adjacent time
samples averaged together. If the data were correlated, the vari-
ance would not scale as 1/n. Third, no significant structures were
seen in the polynomial spectrum (defined below) for each indi-
vidual spectrum or in the averaged spectra. Note that the publicly
available data set for PSR B1937+21 (Kaspi et al. 1994) was not
used in our analysis, since its timing residuals do not pass these
three tests.

Wemade use of the following data sets, which passed the tests:
(1) observations of PSR B1855+09 (also known as PSR J1857+
0943) from the Arecibo radio telescope that are publicly available
(Kaspi et al. 1994); (2) observations for PSRsB1855+09, J0437�
4715, J1024�0719, J1713+0747, J1744�1134, J1909�3744, and
B1937+21 (J1939+2134) using the Parkes radio telescope and
reported by Hotan et al. (2006); and (3) recent observations of all

of these pulsars made as part of the PPTA and related Swinburne
timing projects. The Kaspi et al. (1994) data set was obtained at
�1400 MHz over a period of 8 years. The PPTA observations,
which commenced in 2004 February, include �20 millisecond
pulsars and use the 10/50 cm dual-frequency receiver and a 20 cm
receiver at the Parkes radio telescope. Each pulsar is typically ob-
served at all three frequencies in sessions at intervals of 2Y3 weeks.
The results used here were obtained using a correlator with 2 bit
sampling capable of bandwidths up to 1 GHz and a digital filter-
bank system with 8 bit sampling of a 256 MHz bandwidth. The
PPTA observations and the earlier Hotan et al. (2006) data sets
also used the Caltech Parkes Swinburne Recorder 2 (CPSR2; see
Hotan et al. 2006), a baseband recorder that coherently dedisperses
two observing bands of 64 MHz bandwidth, centered on 1341
and 1405 MHz for observations at 20 cm and around 3100 and
685MHz for (simultaneous) observationswith the coaxial 10/50 cm
receiver. Full details of the PPTA project will be presented in a
forthcoming paper; up-to-date information can be obtained from
our Web site.7 Unfortunately, our stringent requirements on the
‘‘whiteness’’ of the timing residuals has restricted the use of some
of our nominally best-timing pulsars. For instance, even though a
10 yr data span is available for PSR J0437�4715, the full-length
data set is significantly affected by calibration and hardware-
induced artifacts, as well as other unknown sources of timing noise.
A listing of the pulsars observed, the observation span, num-

ber of points, andweighted rms timing residual after fitting for the
pulsars’ pulse frequency and its first derivative, astrometric, and
binary parameters are presented in Table 2. Arbitrary offsets have
been subtracted between data sets obtained with different instru-
mentation. Combining these data sets provides us with data spans
of �20 yr for PSR B1855+09 and �2Y4 yr for the remaining
pulsars. The final timing residuals are plotted in Figure 1.

3. NEW UPPER BOUNDS
ON THE STOCHASTIC BACKGROUNDS

The goal here is to use the measured timing residuals from
multiple pulsars in order to determine the smallest value of A that
can be detected for a given � , as defined by equation (1). This is
done in a three-step process. First, a detection algorithm is defined

TABLE 1

Expected Parameters for Predicted Stochastic Backgrounds

Model A � References

Supermassive black holes...... 10�15 to 10�14 �2/3 Jaffe & Backer (2003), Wyithe & Loeb (2003), Enoki et al. (2004)

Relic GWs.............................. 10�17 to 10�15 �1 to �0.8 Grishchuk (2005)

Cosmic string ......................... 10�16 to 10�14 �7/6 Maggiore (2000)

TABLE 2

Pulsar Observations Used for this Analysis

Pulsar Telescope

Span

(days) N

rms Residual

(�s)

J0437�4715......... Parkes 815 233 0.12

J1024�0719......... Parkes 861 92 1.10

J1713+0747.......... Parkes 1156 168 0.23

J1744�1134 ......... Parkes 1198 101 0.52

J1857+0943.......... Arecibo/Parkes 7410 398 1.12

J1909�3744......... Parkes 866 2859 0.29

J1939+2134.......... Parkes 862 231 0.21

6 Their more stringent constraint of �gh
2 � 6 ; 10�8 was obtained when

data from PSRs B1855+09 and B1937+21 were combined. Since the data from
PSR B1937+21 is far from white, we believe this limit is artificially low and there-
fore restrict our discussion to the PSR B1855+09 data only.

7 See http://www.atnf.csiro.au /research /pulsar/ppta.
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that is sensitive to the presence of the background. Second, this
algorithm is tuned so that in the absence of a signal (i.e.,A ¼ 0),
the probability of the detection scheme falsely detecting the
background is set atPf , known as the false alarm rate. Lastly, for
the given detection scheme and false alarm rate, the upper bound,
Aup, is chosen so that the probability of detecting a background
with A ¼ Aup is Pd . For this paper, the false alarm rate is set to
0.1%, while the upper bound detection rate is set to 95%.

Since all current models of the background predict that the in-
duced timing residuals will be red (the spectrum increases at lower
frequencies), the detection scheme employed here is defined to be
sensitive to a red spectrum. The existence of a red spectrum in the
timing residuals is therefore necessary, but not sufficient, evidence
for the existence of a GW background. Hence, we can use a sta-
tistic sensitive to a red spectrum in order to place an upper bound
on the amplitude of the characteristic strain spectrum. Since the
data sets are irregularly sampled and cover different time spans, a
spectrum based on orthogonal polynomials is employed. Each pul-
sar data set consists of np measured residuals, xp(i ), a time tag tp(i ),
and an uncertainty �p(i ), where i is the data sample index and p is
an index referring to a particular pulsar. The time tags are scaled
so that normalized time tags, �p(i), run from �1 to 1.

These �p(i ) values are used in a weighted Gram-Schmidt or-
thogonalization procedure to determine a set of orthonormal poly-
nomials, j lp(i ), defined from

Xnp�1

i¼0

j lp(i ) j
k
p (i )

�2
p (i )

¼ �l k ; ð5Þ

where j lp(i ) is the lth order polynomial evaluated at �p(i ) and �lk
is the standard Kronecker delta function. Note that the highest
power of t in j lp(i ) is l. For the case when � is continuous and
�2
p (i ) ¼ 1, the above sum becomes an integral and j lp(i ) become

the familiar Legendre polynomials. The following coefficients are
calculated using the orthonormal polynomials, j lp(i ), and the timing
residuals, xp(i ):

C l
p ¼

Xnp�1

i¼0

j lp(i ) xp(i )

�2
p (i )

: ð6Þ

The pulsar average polynomial spectrum is given by

Pl ¼
X
p

(C l
p )

2

vp
; ð7Þ

where the weighted variance, vp, is defined as (1/np)
Pnp�1

i¼0 ½xp(i )�
x̄p�2/�2

p (i ) and x̄ is themean of x. Since the stochastic background
is red, Pl will be large for low values of l if the background sig-
nificantly influenced the residuals.Hence,�¼

P l¼7
l¼0 Pl can be used

as a statistic to detect the background. An upper limit of l = 7 is
used, since 95% of the power is contained in the first seven poly-
nomials for the case of � ¼ �2/3. The background will be
‘‘detected’’ if� > �0, where�0 is set so that the false-alarm rate
is given by Pf .

A Monte Carlo simulation was used to determine �0 and Aup.
Complete details of the simulation and its implementation may
be found in G. B. Hobbs et al. (2007, in preparation), but a brief
overview is given here. The simulation, undertaken in the pulsar
timing package TEMPO2 (G. B. Hobbs et al. 2007, in preparation),
generates an ideal time of arrival (TOA) data set (with the same
sampling as the observed data) from ameasured set of TOAs and a
given timing model. The fluctuations due to the GW background
for a given A and � are introduced into the TOAs by adding to-
gether 10,000 sinusoidal GWs, which come from random direc-
tions on the sky and have randomly chosen frequencies in the
range 1/ 2000 yrð ÞY1/ 0:5 daysð Þ. As a test of the simulation, the
ensemble-averaged power spectrum of the simulated residuals was
calculated over a timescale much larger then the longest GW time-
scale (i.e., 2000yr) andwas shown tobe consistentwith equation (2),
as expected. The GW residuals are then added to the ideal TOA
data set for each pulsar. In order to include the effects of measure-
ment noise, the measured timing residuals are added back into
the data set, but randomly shuffled. This ensures that the added
noise has the same probability distribution as the actual measure-
ment noise. In this way, a new set of TOAs are generated that in-
clude bothmeasurement noise and the GWbackground. Note that
the shuffling procedure is only valid when the data have a white
spectrum. Otherwise, the spectral properties of the original data
set and the shuffled data set will not be the same. This simulated
TOA data set will then be analyzed in exactly the same way as a
real data set.Hence, all the systemic effects that inhibit gravitational
wave detection, such as low order polynomial removal, Earth’s
orbital motion, annual parallax effects, and orbital companion
effects, are appropriately accounted for in the simulation.

To calculate�0 , the simulation generates 10,000 independent
simulated sets of TOAs for each pulsar with A¼ 0 (i.e., no GW
background). The statistic� is calculated for each of the 10,000 trials.
Using this set of � values, together with the chosen false alarm
rate, Pf , the value of �0 can be determined. Once�0 is chosen,
the simulation is used to generate TOA data sets that include the
effects of GWs. For a given value of A, the probability of detec-
tion is determined using� and�0 . Aup is chosen to be that value
of Awhen the probability of detection is equal to Pd .

Note that the effects of unknown time offsets (‘‘jumps’’) in the
data sets are included in the calculation of both�0 and Aup using
this technique, since TEMPO2 fits for these offsets in the TOA
data set after the GW background has been added. Since we are
using TEMPO2 to analyze the data, the effects of all the fitting
procedures are being taken into account.

4. RESULTS

Using the pulsar data sets described above, the 95% detection
rate upper boundwith a false alarm rate of 0.1% is given in Table 3
for different values of � . The relationship between A and � is
shown in Figure 2. These upper bounds on A can be converted to
an upper bound on the normalized GW energy density per unit
logarithmic frequency interval, �gw( f ), using equations (1) and
(3). Our limits on �gw(1 yr�1) are indicated on the right-hand
axis of Figure 2.

Fig. 1.—Pulsar timing residuals. The length of the vertical line on the left-
hand side represents 10 �s.
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We can compare our results to the previously published limit
of Kaspi et al. (1994), who obtained �gw 1/(8 yr)½ �h2 < 1:1 ;
10�7 (star symbol in Fig. 2). Using the same data set asKaspi et al.
(1994), our method provides a similar limit of �gw 1/(8 yr)½ �h2 <
1:3 ; 10�7. Combining this data set with our more recent ob-
servations provides a more stringent limit of �gw 1/(8 yr)½ �h2 <
1:9 ; 10�8.

The most stringent limit reported to date was obtained by
Lommen (2002). Unfortunately, these observations are not pub-
licly available. In order to compare our technique, we use the
original PSR B1855+09 Kaspi et al. (1994) data set along with
two simulated white data sets that realistically model the NRAO
140 foot telescope and Arecibo observations that form the remain-
der of the Lommen (2002) data (we simulate 60 observationswith
an rms residual of 5 �s between MJDs 47800 and 51360 for the
140 foot telescope and a further 60 observations with an rms re-
sidual of 1 �s between MJDs 50783 and 52609 for the most re-
cent Arecibo data). As we simulate neither systematic effects nor
timing noise, our limit will be more stringent than could be ob-
tainable using the real data set. For � ¼�2/3, we obtained A �
9 ; 10�15, corresponding to �gw 1/(17 yr)½ �h2 ¼ 8 ; 10�9. This
limit is a factor of 4 less stringent than that reported by Lommen
(2002).

Using simulated data, the upper bounds that can be expected
from future experiments can be determined. The goal of the
PPTA is to time 20 pulsars with an rms timing residual of 100 ns
over 5 years. The dashed line in Figure 2 plots Aversus� for such
a data set, which could potentially provide a limit on a background
of supermassive black hole systems of Aup < 6:5 ; 10�16 or
�gw 1/(8 yr)½ �h2 � 6:6 ; 10�11 (see Table 3).

In Jenet et al. (2005), techniques to use an array of pulsars to
detect a stochastic background of GWs with � ¼ �2/3 were de-
veloped.8 Given a value for Aup, one can use such techniques to
determine the probability of definitively detecting the GW back-
ground using the completed PPTA data sets (20 pulsars with an
rms timing residual of 100 ns over 5 years) if Awere equal to Aup.
In terms of the parameter S, defined in Jenet et al. (2005), a sig-
nificant detection would occur if S > 3:1. This corresponds to a
0.001 false alarm rate. For the case of � ¼ �2/3, the expected
value of S (assuming ideal whitening) is about 4.1 for A ¼ Aup.
Since the probability distribution of S is approximately Gaussian,
the probability of S > 3:1 when hSi ¼ 4:1 is 85%. Hence, the
GW backgroundwould be detected 85% of the time. For the case
of 10 years of observations, the detection rate increases to over
99% of the time.

5. IMPLICATIONS AND DISCUSSION

The upper bound on the stochastic background can be used to
probe several aspects of the universe. Precisely what is being con-
strained depends on the physics of the particular background in
question. Here, both the measured upper bounds using the cur-
rently available data and the expected upper bounds using the full
5 year PPTA data set are discussed in the context of several GW
backgrounds.

5.1. Supermassive Black Holes

AGWbackground generated by an ensemble of supermassive
black holes distributed throughout the universe has been inves-
tigated by several authors (Jaffe & Backer 2003; Wyithe & Loeb
2003; Enoki et al. 2004). In general, the characteristic strain spec-
trum for this background can be written as:

hc( f )¼ 2:510�16h
f

yr�1

� ��2=3
Mc

107 M�

� �5=3* +1=2
N0

Mpc�3

� �1=2
I1=2;

ð8Þ

where

I ¼
Z

N (z)

N0

H0

a(z)

ȧ(z)

dz

(1þ z)4=3
; ð9Þ

a(z) is the cosmological scale factor written in terms of redshift,
z, ȧ(z) is the derivative of a(z) with respect to cosmic time,
H0 is the Hubble constant, the chirp mass Mc ¼ ½M1M2(M1þ
M2)

�1/3�3/5 of a given binary system, h� � �i represents ensemble
averaging over all the systems generating the background, N (z)
is the galaxy merger rate as a function of redshift, and N0 is the
present-day number density of merged galaxies that created
a black hole binary system. The values of each of these physical
quantities are currently poorly constrained, and each investigator
has chosen a different parameterization. Under the framework de-
scribed by Jaffe & Backer (2003), hM 5/3

c i and N0 are constrained
by observations at the current epoch to be hMci � 2:3 ; 107 M�
and N0 �1 Mpc�3. They parameterized the galaxy merger rate
such that R(z) goes as (1þ z)� . Hence, I depends on �. Com-
bining the estimates of hMci and N0 with our measured upper

Fig. 2.—Minimum detectable A [or �gw(1 yr�1) h2; right axis] vs. � for our
current limits (solid line) and potential future limits from the PPTA (dashed line).
The star symbol indicates the limit obtainable using the Kaspi et al. (1994) ob-
servations of PSR B1855+09. From left to right, the near-vertical dotted lines in-
dicate the expected range of amplitudes for the cosmic strings, relic GW, and
supermassive black hole background, respectively.

8 Note that A, as defined here, is larger by a factor of
ffiffiffi
3

p
compared to the

definition of A used in Jenet et al. (2005). The definition used here is consistent
with Jaffe & Backer (2003) and Wyithe & Loeb (2003).

TABLE 3

Current and Potential Future Limits on the Stochastic

Gravitational-Wave Background

� A �gw[1/(1 yr)]h2 �gw[1/(8 yr)]h2 �gw[1/(20 yr)]h2

�2/3 ...... 1.1 ; 10�14 7.6 ; 10�8 1.9 ; 10�8 1.0 ; 10�8

�1 ......... 5.7 ; 10�15 2.0 ; 10�8 2.0 ; 10�8 2.0 ; 10�8

�7/6 ...... 3.9 ; 10�15 9.6 ; 10�9 1.9 ; 10�8 2.6 ; 10�8

�2/3 ...... 6.5 ; 10�16 2.7 ; 10�10 6.6 ; 10�11 3.6 ; 10�11

�1 ......... 3.8 ; 10�16 9.1 ; 10�11 9.1 ; 10�11 9.1 ; 10�11

�7/6 ...... 2.8 ; 10�16 4.9 ; 10�11 9.9 ; 10�11 1.3 ; 10�10

Notes.—The first three rows give limits derived from current observations.
Limits based on timing 20 pulsars with an rms timing residual of 100 ns over 5 yr
are given in the last three rows.
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bound of Aup ¼ 1:1 ; 10�14, one finds that I � 3. Using the full
PPTA after 5 years, one expects I � 0:8. These constraints, to-
gether with the calculations of Jaffe &Backer (2003; see Fig. 4 in
their work), constrain �. Currently, the limit on � is<2.6 and with
the full PPTA � < 0:4. This value is expected to lie somewhere
between �0.4 and 2.3 (Carlberg et al. 2000; Patton et al. 2002).
Current PPTA sensitivity (i.e., using the data presented in this
paper) is just above the expected range, while the full PPTA should
be able to place meaningful constraints on this exponent.

In the Wyithe & Loeb (2003) work, both hM 5/3
c i and I depend

strongly on the black hole versus galactic-halo mass (MBH-MHM)
relationship. They discuss several different scenarios, which yield
differentMBH-MHM relationships, and hence different levels of the
background. For the case of anMBH-MHM relationship determined
by Ferrarese (2002), the expected value of A is 2 ; 10�15. For the
MBH-MHM relationship derived from Navarro et al. (1997), A ¼
5 ; 10�15. Using anMBH-MHM relationship derived from simple
considerations of black hole growth by feedback from quasar ac-
tivity (Wyithe & Loeb 2003; Haehnelt et al. 1998; Silk & Rees
1998), A � 10�15. Our measured upper limit for � ¼ �2/3 can-
not rule out any of these models. However, if only a limit is ob-
tained from the full PPTA observations, it will rule out all of the
models described above.

5.2. Relic Gravitational Waves

A relic GWbackground is generated by the interaction between
the large-scale dynamic cosmological metric and quantum fluc-
tuations of the metric perturbations occurring in the early universe
(Grishchuk 2005). In the nHz frequency regime, the background
takes the following form:

hc( f ) ¼ hc( fh)
f

H0

� ��
a2

aH

� �1=2
; ð10Þ

where hc( fh) is themagnitude of the characteristic strain spectrum
at f ¼ H0, aH is the current value of the cosmological expansion
factor, and a2 is the value of the expansion factor at the start of the
matter-dominated epoch. Note that this expression is not valid in
the ultralow frequency regime where f � H0. The notation used
here is consistent with Grishchuk (2005), except for �, which is
related to Grishchuk’s parameter � by � ¼ 1þ �. The exponent
determines the evolution of the inflationary epoch that starts the
GWamplification process. When � ¼ �1, the scale factor grows
exponentiallywith global cosmic time. The ratio a2/aH is believed
to be about 10�4. The hc( fh) value is constrained by cosmic mi-
crowave backgroundmeasurements to be about 10�5. Using these
values and assuming the validity of the amplification scenario de-
scribed inGrishchuk (2005), the upper bound onAmay be used to
constrain � . The upper bound on � is given by the solution to the
following equation:

hc( fh)
1= 1 yrð Þ

fh

� ��
a2

aH

� �1=2
¼ A(� ): ð11Þ

The above equation yields � � �0:7 for the current PPTA and
� � �0:84 for the full PPTA. Within the theoretical framework
described by Grishchuk (2005), if � is larger than�0.80, small-
scale GWs will affect primordial nucleosynthesis, while an � less
than�1.0 will result in an infinitely large energy density in small-
scale GWs. Hence, the full PPTA will be able to place useful
constraints on the relic GW background. Since � determines the

rate of expansion in the inflationary epoch, it turns out that it is
related to the equation of state of the ‘‘matter’’ in that epoch by

P

	
¼ w ¼ 2� �

3�
; ð12Þ

where P is the pressure and 	 the energy density. The full PPTA
will constrain w in the early universe to be greater than �1.17.
This would limit inflationary models based on ‘‘quintessence’’
and ‘‘phantom energy’’ (Nojiri et al. 2006; Padmanabhan 2005).

5.3. Cosmic Strings

It has been proposed that oscillating cosmic string loops will
produce GW radiation (Vilenkin 1981). Recently, Damour &
Vilenkin (2005) discussed the possibility of generating a stochas-
tic GW background using a network of cosmic superstrings. Using
a semianalytical approach, they derived the following characteristic
strain spectrum, valid in the pulsar timing frequency range (see their
equation [4.8]):

hc( f ) ¼ 1:6 ; 10�14c1=2p�1=2	
�1=6
eA

; (h=0:65)7=6
G�

10�6

� �1=3
f

yr�1

� ��7=6

; ð13Þ

where � is the string tension,G is Newton’s constant, c is the av-
erage number of cusps per loop oscillation, p is the reconnection
probability, 	eff is a loop length scale factor, and h is the Hubble
constant in units of 100 km s�1 Mpc�1. Note that for the above
estimate, h was evaluated at 0.65 in order to be consistent with
Damour & Vilenkin (2005). The combination G� is the dimen-
sionless string tension that characterizes the gravitational interac-
tion of the strings. The predicted string tensions are 10�11 � G� �
10�6 (Damour & Vilenkin 2005). Using the above spectrum, to-
gether with the measured upper bound on hc for � ¼ �7/6, an
upper bound can be placed on the dimensionless string tension:

G� � 1:5 ; 10�8c�3=2p3=2	
1=2
eA (h=0:65)�7=2: ð14Þ

As emphasized by Damour & Vilenkin (2005), the above expres-
sion for the upper bound may be simplified using the fact that both
p and 	eff are less than one and h is expected to be greater than 0.65:

G� � 1:5 ; 10�8c�3=2: ð15Þ

Using a standard model assumption in which c ¼ 1, the upper
bound becomesG� � 1:5 ; 10�8. This is already limiting the pa-
rameter space of the cosmic stringmodel of Sarangi&Tye (2002).
With the full PPTA, the limit will become G� � 5:36 ; 10�12.
Hence, the full PPTAwill either detect GWs from cosmic strings
or rule out most current models.
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