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ABSTRACT
We present an analysis of the variations seen in the dispersion measures (DMs) of 20-ms pulsars
observed as part of the Parkes Pulsar Timing Array project. We carry out a statistically rigorous
structure function analysis for each pulsar and show that the variations seen for most pulsars
are consistent with those expected for an interstellar medium characterized by a Kolmogorov
turbulence spectrum. The structure functions for PSRs J1045−4509 and J1909−3744 provide
the first clear evidence for a large inner scale, possibly due to ion–neutral damping. We also
show the effect of the solar wind on the DMs and show that the simple models presently
implemented into pulsar timing packages cannot reliably correct for this effect. For the first
time we clearly show how DM variations affect pulsar timing residuals and how they can be
corrected in order to obtain the highest possible timing precision. Even with our presently
limited data span, the residuals (and all parameters derived from the timing) for six of our
pulsars have been significantly improved by correcting for the DM variations.
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1 I N T RO D U C T I O N

The Parkes Pulsar Timing Array (PPTA) is a project which aims
to take advantage of the extraordinary rotational stability of short-
period (millisecond) radio pulsars. The principal goal of the PPTA
is to make a direct detection of gravitational waves (Hobbs 2005;
Manchester 2006). For this purpose it is necessary to measure
weekly times of arrival (TOAs) of ∼20 pulsars with a precision
between 100 and 500 ns (Jenet et al. 2005). In order to achieve this
goal all systematic errors in the TOAs must be considered and, if
possible, corrected. One such correction is the delay caused by the
plasma between the pulsar and the Earth. Most of this plasma con-
tribution is from the interstellar medium (ISM), but the contribution
of the solar wind cannot be neglected and the ionosphere will occa-
sionally be important. The dispersion in the plasma is a linear effect
and can, in principle be corrected exactly. The group delay, tg(ν), is
related to the integral of the electron density, ne, from the Earth to
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the pulsar, tg(ν) = DM/(Kν2), where

DM =
∫ L

0

ne dl (1)

is the ‘dispersion measure’. The dispersion constant K ≡ 2.410 ×
10−4 MHz−2 cm−3 pc s−1, ν is the observing frequency and L the
distance from the Earth to the pulsar. When TOAs, tg1 and tg2, are
measured at two frequencies, ν1 and ν2, the DM can be estimated
using

DM = K
tg2 − tg1

ν−2
2 − ν−2

1

. (2)

A rough estimate of the DM of a (radio) pulsar is generally ob-
tained from the discovery observations. This estimate can be quickly
refined by re-observing the pulsar with more widely separated fre-
quencies. Measured DMs for currently known radio pulsars lie be-
tween 2.38 and 1235 cm−3 pc and from 2.65 to 244 cm−3 pc for the
subset of millisecond pulsars (Manchester et al. 2005).1

1 http://www.atnf.csiro.au/research/pulsar/psrcat
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Precise measurements of DM show that it often has significant
time variations. A time delay of 100 ns at an observing frequency
of 1400 MHz, the accuracy goal of the PPTA, corresponds to a DM
variation of 4.72 × 10−5 cm−3 pc. Variations of this order can occur
in the ionosphere only for zenith angles in excess of 80◦ or dur-
ing major geomagnetic storms, so ionospheric corrections will not
normally be necessary. At this level of timing precision, significant
variations in DM can occur due to the solar wind even when the pul-
sar is 60◦ away from the Sun. Variations in the interstellar plasma
DM result from plasma turbulence and usually have a Kolmogorov
power spectrum, implying that the variations are larger over longer
time-scales. In the pulsars observed by the PPTA project, such DM
fluctuations can reach levels that require correction within a few
days or weeks.

It is clear that the goals of the PPTA project cannot be reached
without measuring the DM and correcting for the plasma delay for
each observation. The most precise TOA measurements are usually
obtained at a frequency of 1400 MHz, but the only dual-band re-
ceiver available at the Parkes telescope is at 685 and 3100 MHz.
Thus the DM variations are measured using the dual-band sys-
tem at different times than the TOA observations at 1400 MHz.
Since the DM varies relatively smoothly, the DM correction can
be interpolated to the epoch of the primary TOA observation. In
this paper we use the first few years of DM measurements to test
methods of correcting for the solar wind, to study the interstellar
plasma turbulence and to derive algorithms for correcting the TOA
measurements.

2 C AU S E S O F D M VA R I AT I O N S

The contributions of the ionosphere and the solar wind have been
well studied and can be estimated by various methods independently
of the PPTA. The total electron content of the ionosphere (‘TEC’)
is regularly monitored because it is needed to correct the Global
Positioning System (GPS) navigational system. A monitor is located
at the Parkes Observatory, but it is seldom necessary to make this
correction. Corrections for the solar wind are implemented in the
standard pulsar timing codes TEMPO and TEMPO2 (Edwards, Hobbs &
Manchester 2006; Hobbs, Edwards & Manchester 2006). However,
these assume a spherically symmetric solar wind with a constant
scale factor and do not model observed variations in wind density
with latitude, longitude and time which can be as much as a factor
of 4 at any distance (McComas et al. 2000). The earlier package,
TEMPO, assumes a higher density compared to TEMPO2. Neither of
these is adequate for the desired PPTA precision.

The DM due to the ISM varies for a variety of reasons. For exam-
ple, variations are known to occur for some pulsars within supernova
remnants, when wisps of ionized gas drift across the line of sight
to the pulsar. For instance, the DM of the Vela pulsar decreased
at a rate of 0.04 cm−3 pc yr−1 from 1970 to 1985 (Hamilton, Hall
& Costa 1985). Similarly the Crab pulsar shows variations up to
0.02 cm−3 pc yr−1 over 15 yr (Lyne, Pritchard & Smith 1988). Pul-
sars in binary systems which exhibit eclipses show DM variations
from the ionized envelope of the companion object. These have
been measured for two of the binary pulsars in the globular cluster
47 Tucanae (Freire et al. 2003). The DM change of 0.0065 cm−3 pc
for one of these, PSR J0023−7203J, is 100 times the level that would
require correction for the PPTA pulsars. Even larger changes have
been observed in PSR B1259−63 which is in orbit with a massive
B2e star, reaching 10.7 and 7.7 cm−3 pc during the periastron pas-
sages of 1994 and 1997, respectively (Wang, Johnston & Manchester
2004).

The DM also varies due to turbulent spatial variations which drift
across the line of sight between the Earth and the pulsar. These have
commonly been characterized in the literature as linear slopes in
DM. Measurements of such dDM/dt values for four pulsars were
discussed by Backer et al. (1993) who proposed that dDM/dt ∝
(DM)1/2 and modelled the variation using wedges of enhanced den-
sity. Observations of 374 pulsars were presented by Hobbs et al.
(2004) who found the same relationship. However, a better charac-
terization of the DM variations can be made using the theoretical
spatial characteristics of a turbulent process. As shown later, in a
turbulent model the relation dDM/dt ∝ (DM)1/2 arises naturally
and does not require a wedge model. The spatial power spectrum of
electron density was defined by Rickett (1990) as

P(q) = C2
n q−β ; 2π/lo < q < 2π/li, (3)

where C2
n scales the power spectrum (and thus the total energy in

the process), β is the power-law exponent (which is 11/3 for a
Kolmogorov spectrum), lo is the outer scale and li is the inner scale.
Physically the outer scale is identified with the largest scale in the
medium, typically the size at which it becomes inhomogeneous, and
the inner scale is the scale at which dissipation occurs. Energy is
introduced at some scale between lo and li, supporting the spectrum.
This energy ‘cascades’ in frequency to li where it is dissipated. Tur-
bulent variations in electron density can be estimated from DM vari-
ations and various diffractive phenomena such as angular scattering,
pulse broadening and intensity scintillations. Diffractive variations
are caused by much smaller scale fluctuations in density and thus
probe different regions of the spatial spectrum than DM variations.
Diffractive variations are modulated by refractive variations which
can be used to probe scales between the diffractive and the DM
scales. All these observed variations result from the motion of the
line of sight through the scattering medium, thus spatial variations
of scale s are associated with temporal variations of scale T by s =
VT , where V is the velocity of the line of sight with respect to the
scattering plasma. Therefore, the inner time-scale τ i corresponds to
li = Vτ i.

Radio scattering observations, such as those mentioned above, are
directly sensitive to a statistic called the ‘phase structure function’,
Dφ(τ ), which is defined by

Dφ(τ ) = 〈[φ(t + τ ) − φ(t)]2〉, (4)

where φ is the geometrical phase delay between the source and
the observer and the angle brackets denote an ensemble average.
For a power-law spatial spectrum with 2 < β < 4 between the
inner and outer scales, the structure function Dφ is given by (Rickett
1977)

Dφ(τ ) = (τ/τd)α, (5)

where α = β − 2. Similarly, we can define a structure function for
the DM variations:

DDM(τ ) = 〈[DM(t + τ ) − DM(t)]2〉. (6)

At scales that are larger than the scale of refractive scintillation, the
geometrical phase approaches the actual phase (Coles et al. 1991)
and these two structure functions can be related through the disper-
sion relation (equation 2),

DDM(τ ) = (Kν/2π)2 Dφ(τ ). (7)

The structure function was first used to investigate DM varia-
tions by Rickett (1988). Subsequently, the technique was applied
to PSR J1939+2134 (B1937+21) by Cordes et al. (1990), Kaspi,
Taylor & Ryba (1994) and Ramachandran et al. (2006). Cordes
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Table 1. Parameters for the PPTA pulsars.

P Ṗ Pb DM Dist. µ bE

PSR name (ms) (10−20) (d) (cm−3 pc) (kpc) (mas yr−1) (◦)

J0437−4715 5.757 5.73 5.74 2.6 0.16a 140.89 −67.87
J0613−0200 3.062 0.96 1.20 38.8 1.71 7.3 −25.41
J0711−6830 5.491 1.49 – 18.4 0.86 21.9 −82.89
J1022+1001 16.453 4.33 7.81 10.3 0.30a 17 −0.064
J1024−0719 5.162 1.85 – 6.5 0.39 81 −16.04
J1045−4509 7.474 1.77 4.08 58.1 1.96 7.8 −47.71
J1600−3053 3.598 0.95 14.35 52.3 1.63 4.1 −10.07
J1603−7202 14.842 1.56 6.31 38.1 1.17 8.5 −49.96
J1643−1224 4.622 1.85 147.02 62.4 2.41 9 9.78
J1713+0747 4.570 0.85 67.83 16.0 1.12a 6.4 30.70
J1730−2304 8.123 2.02 – 9.6 0.53 20.5 0.19
J1732−5049 5.313 1.38 5.26 56.8 1.41a – −27.49
J1744−1134 4.075 0.89 – 3.1 0.36 20.99 11.81
J1824−2452 3.054 162.00 – 119.9 3.09 4.7 −1.55
J1857+0943 5.362 1.78 12.33 13.3 0.91a 6.16 32.32
J1909−3744 2.947 1.40 1.53 10.4 1.14a 36.99 −15.16
J1939+2134 1.558 10.50 – 71.0 3.57 0.80 42.30
J2124−3358 4.931 2.05 – 4.6 0.27 49.0 −17.82
J2129−5721 3.726 2.07 6.63 31.9 1.36 8 −39.90
J2145−0750 16.052 2.98 6.84 9.0 0.50a 14.1 5.31

aDistance obtained from a parallax measurement.

et al. (1990) showed that the structure function was consistent with
a power-law fluctuation spectrum with index β between 11/3, the
Kolmogorov value and 4. Kaspi et al. (1994) continued this work
and obtained β = 3.874 ± 0.011. From the approximate agreement
of the diffractive time-scale τ d computed from equation (5) and the
directly measured value, Cordes et al. (1990) inferred that the inner
scale of the fluctuation spectrum, li, was less than about 2 × 107 m.
Recently, Ramachandran et al. (2006) extended the data-span to
20 yr and obtained β = 3.66 ± 0.04 which is consistent with the
value expected for a Kolmogorov spectrum and suggested li ∼ 1.3 ×
109 m. Cognard & Lestrade (1997) presented the DM variations
of a different millisecond pulsar, PSR J1824−2452 (B1821−24),
and obtained β = 3.7 ± 0.2 which is also consistent with a
Kolmogorov spectrum. DM variations were measured for six pulsars
by Phillips & Wolszczan (1991) and structure functions were ob-
tained for PSRs B0834+06, B0823+26 and B0919+06. Measured
power-law indices were in the range 3.77 to 3.87 with uncertainties
of 0.04 or less.

Assuming that the DM variations are due to turbulence then,
from the definition of the structure function, the ‘slope’ dDM/dt,
averaged over an interval τ , will be a random variable with an rms
of [DDM(τ )]1/2/τ . This can be related to the mean DM value by the
distance to the pulsar L as both DM and DDM(τ ) are proportional
to L. Thus the observed result that dDM/dt ∝ (DM)1/2 is expected
for any turbulent medium and does not require ad hoc models such
as the wedge model of Backer et al. (1993). This proportionality
will be valid for spatial scales Vτ that are less than the parsec scale
of interstellar clouds, since it assumes that contributions to the DM
fluctuations from various points on the line of sight add incoherently.

There have been three dissipation mechanisms discussed in the lit-
erature: ion–cyclotron damping (which is the primary mechanism in
the solar wind), Landau damping and ion–neutral collisional damp-
ing. It is not thought that Landau damping is important in the ISM
(Minter & Spangler 1997). Ion–cyclotron damping will certainly oc-
cur if the turbulent cascade reaches the small spatial scales involved.

It occurs at the ion inertial scale (Coles & Harmon 1989),

L i = 684 km/
√

ne(cm−3), (8)

and has been clearly observed in the solar wind. Expected scales in
the ISM range from 300 to 3000 km and it has almost certainly been
observed at scales of 300 to 800 km using pulse broadening obser-
vations (Bhat et al. 2004). Damping due to ion–neutral collisions
is also a resonant process that occurs near the ion–neutral collision
frequency and would result in scales of ∼30 au in typical warm ISM
conditions (Minter & Spangler 1997).

3 O B S E RVAT I O N S A N D DATA A NA LY S I S

The PPTA, which commenced observations in 2004 February, uses
the Parkes 64-m radio telescope to make timing observations of 20-
ms pulsars. One, PSR J1824−2452, lies within the globular cluster
M28, the others within the disc of our Galaxy. Table 1 lists ba-
sic parameters for the 20 PPTA pulsars: J2000 name, period (P),
period derivative (Ṗ), orbital period (Pb) if the pulsar is in a bi-
nary system, DM, distance based on the NE2001 electron density
model (Cordes & Lazio 2002) unless the annual parallax or an-
other independent distance estimate is available, total proper mo-
tion (µ) and ecliptic latitude (bE). Because PSRs J1022+1001 and
J1730−2304 lie very close to the ecliptic plane, timing methods
cannot provide a precise proper motion in ecliptic latitude; for these
two pulsars the proper motion in ecliptic longitude is given. Each
pulsar is typically observed at intervals of 2–3 weeks at frequen-
cies close to 685 MHz (50 cm), 1400 MHz (20 cm) and 3100 MHz
(10 cm), where the band designations (based on wavelength) are
given in parentheses. We have used three backend systems: a wide-
band correlator (WBC), a digital filterbank system (DFB1)2 and

2 A new digital filterbank system (DFB2) with a wider bandwidth and im-
proved resolution is currently under construction.
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Figure 1. Stokes I profiles for the 20-ms pulsars in our sample. For each pulsar we give the 50, 20 and 10 cm profiles from top to bottom, respectively (except
for PSR J2129−5721 where only 50- and 20-cm profiles are available).

the Caltech–Parkes–Swinburne Recorder 2 (CPSR2), a coherent
dedispersing system, all of which record orthogonal linear polar-
isations. The WBC provides 2-bit sampling with a bandwidth of
up to 1024 MHz for the earlier data. The DFB1 was installed in
2005 June and allows 8-bit sampling of a 256-MHz bandwidth at 10
and 20 cm. Observations at 10 and 50 cm are obtained simultane-
ously using a dual-band receiver providing bandwidths of 64 MHz at
50 cm and 1024 MHz at 10 cm. Most observations at 20 cm are made
using the central beam of the Parkes multibeam receiver although
the ‘H–OH’ receiver has occasionally been used for observations in
this band. Data are simultaneously recorded using the CPSR2 base-
band recording system with 2-bit sampling of two 64-MHz bands,
centred on 1341 and 1405 MHz, respectively, and either the WBC
or DFB1 with 256-MHz bandwidth. At 50 cm, data are recorded
using one band of CPSR2. For all receivers, a linearly polarized
broad-band calibration signal can be injected into the feed at 45◦ to
the two signal probes.

Observation times per pulsar are typically either 32 or 64 min
and data are folded on-line with subintegration times of 1 min for
the WBC and DFB1 and 16 s for CPSR2. All pulsar observations
are preceded by a short (2 min) observation of a pulsed calibration
signal. For most pulsars the WBC and DFB1 data are split into 512
frequency channels with between 256 and 1024 phase bins across
the pulse period. For CPSR2, the data are coherently dedispersed
in each of 128 frequency channels with 1024 phase bins. Off-line
processing uses the PSRCHIVE software system (Hotan, van Straten &
Manchester 2004). For all recording systems, data from frequency
channels or subintegrations which are obviously affected by radio-

frequency interference are excised, as are channels from the outer
edges of the band (typically about 5 per cent of the band at each edge)
where the system gain is low. Data are then calibrated for variations
of instrumental gain and phase across the band using observations
of the pulsed calibration signal and the Stokes parameters formed.

For all pulsars except PSR J0437−4715, pulse TOAs were ob-
tained by cross-correlating a template profile with the Stokes I
mean pulse profile for each observation. For most of the observed
pulsars, errors in the calibration procedure resulted in TOA er-
rors which were less than the uncertainty due to random (receiver)
noise. However, for PSR J0437−4715 at 20 and 50 cm, this was
not the case and it was advantageous to use the polarimetric in-
variant interval instead of Stokes I (Britton et al. 2000). Template
profiles were formed for each instrument and each observing fre-
quency (685, 1341, 1405 MHz for CPSR2, 1369 and 3100 MHz for
the DFB1, 1433 and 3100 MHz for the WBC) by weighted sum-
ming of all available data to form ‘grand average’ profiles and
then blanking the baseline regions. Fig. 1 shows the grand aver-
age Stokes I profiles at the three frequencies for all 20 pulsars (ex-
cept for PSR J2129−5721 where we have data for two frequencies
only).

For DM measurements, profile alignment across frequencies is
an important issue. The template profiles for a given pulsar were
approximately aligned using the cross-correlation of each profile
with a reference profile. However, because of frequency-dependent
profile variations, there remains some uncertainty in the true align-
ment. In this work, we are primarily concerned with variations
in DM, not absolute values, so arbitrary phase offsets between
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data obtained using different systems were included in the timing
model.

The resulting TOAs were analysed using TEMPO2. Timing model
parameters were obtained by fitting standard pulsar timing param-
eters (including astrometric, spin and binary parameters) to the 20
and/or the 10 cm observations.3 As we are interested in DM varia-
tions, we do not fit for any time derivatives of the DM as part of the
timing model; however, we do allow TEMPO2 to model the DM vari-
ations due to the solar wind (this is further discussed in Section 5.2).
The timing model parameters were subsequently held constant in
order to obtain timing residuals at all observing frequencies.

To obtain the time variations in DM, 
DM(t), we fitted equa-
tion (2) to segments of timing data. The segment lengths were ad-
justed so that each segment contained at least one observation at
each frequency (typically 1 or 2 weeks). Initially we used the 10
and 50 cm observations to obtain 
DM(t) because these were ob-
tained simultaneously and are well separated in frequency. However,
if the pulse profile at 10 or 50 cm has a low signal-to-noise ratio, we
also used 20 and 50 cm or 10 and 20 cm to obtain 
DM(t).

The structure function is a useful statistic for studying the physi-
cal process causing the DM variations. Calculation of the structure
function is straightforward, even for unequally spaced data (equa-
tion 6). However, the estimation of the errors in the structure function
due to uncertainties in the 
DM(t) values, and due to the finite
duration of the 
DM(t) series has not been discussed consistently in
the literature. Because of the irregular data sampling, τ represents a
‘bin’ with a width which we have adjusted to give roughly equal log-
arithmic sampling. Estimation of DDM(τ ) for a power-law process
from a single ‘realization’ of the process incurs a significant error
which has been discussed by Rickett, Coles & Markkanen (2000).
For Kolmogorov processes they found that the estimation error
σ est(τ ) ∝ D(τ )[τ/(T − τ )]1/3, where T represents the data-span. We
have extended their simulations to pure power-law processes which
do not have a defined low frequency limit (or ‘outer scale’). For
uniformly sampled data from a Kolmogorov process we find that

σest(τ ) = 1.66D(τ )(τ/T )1/3. (9)

Assuming that the process itself has Gaussian differences, the struc-
ture function estimator must be χ 2 distributed, and defined by Ndof,
the number of degrees of freedom. The estimation error can be
written in terms of Ndof as σ est(τ ) = D(τ )(2/Ndof)0.5, so Ndof =
0.72(T/τ )2/3. As our data are irregularly sampled we sometimes
have fewer pairs, Np, or fewer samples, Ns, contributing than Ndof.
We therefore approximate the actual number of degrees of freedom
as the minimum of (Np, Ns, Ndof).

In addition to the estimation error discussed above, which is the
amount by which a single realization of a random process can be
expected to depart from the theoretical mean, we must consider the
fact that the measurements include a white noise component inde-
pendent of DM(t). We assume that the errors on the 
DM(t) val-
ues are independent, Gaussian and have known, but different, stan-
dard deviations. These contribute a different bias and error to each
Dest(τ ) which are computed by expanding each Dest(τ ) as shown in
Appendix A.

Our work contrasts with earlier estimates of the structure function.
In earlier work, the uncertainty on the structure function was either

3 We use residuals obtained using CPSR2, WBC and DFB1. However, for a
few pulsars with high DM and short period, the WBC profile is significantly
smeared and therefore, for PSRs J0613−0200, J1600−3053, J1824−2452,
J1939+2134, we only use the CPSR2 and DFB1 observations.

Table 2. Scintillation parameters for the PPTA millisecond pulsars.

Freq. τ d νd Ref.
PSR name (MHz) (min) (MHz)

J0437−4715 327 1.9–5.1 0.18–3.0 1
436 4.6–11 3.2–4.4 2, 3
660 7.8 17 2

J0711−6830 436 13 0.37 2
660 16 1.2 2

J1600−3053 1373 4.7 <0.5 4
J1603−7202 660 9.2 0.36 2
J1713+0747 430 14 0.6 5

436 28 1.5 2
J1730−2304 327 7.4–7.5 0.10–0.12 1

436 6.3–12 0.15–0.18 2, 3
660 9.7 1.4 2

1520 23–27 30–38 2, 3
J1744−1134 436 21 1.3 2

660 20 2.3 2
J1939+2134 320 1.1 0.0014 6

430 1.7 0.0042 6
1400 7.4 0.92 6

J2124−3358 436 44 6.9 2
J2129−5718 436 11 0.29 2

660 17 1.3 2
1520 24 58 2

J2145−0750 327 6.4 0.33 1
436 21–25 0.61–2.5 2, 3

Notes. Reference: 1 – Gothoskar & Gupta (2000); 2 – Johnston et al. (1998);
3 – Nicastro & Johnston (1995); 4 – Ord et al. (2006); 5 – Bogdanov et al.
(2002); 6 – Cordes et al. (1990).

estimated as the standard deviation divided by the square root of
the number of points (Cordes et al. 1990) or as the smaller of the
number of points and (T/τ ) (Ramachandran et al. 2006). The choice
of the bias term which is subtracted from DDM(τ ) has also been
inconsistent in the literature. Usually the bias has been taken as
the average of the 
DM(t) errors. This method is only accurate
when the number of points is very large and the error on 
DM(t) is
significantly smaller than its value. Earlier work also did not allow
for the error on the measured 
DM(t) values which, for some data
sets, is very important.

It is useful to obtain the diffractive time-scale, τ d, and bandwidth,
νd, for each pulsar to compare with the DDM(τ ). For many pulsars
we were able to obtain these values from the literature. Table 2 gives
these τ d and νd values. In column order, the table contains the pulsar
name, observing frequency, τ d, νd and a bibliographic reference.
However, no measurements existed for nine of our pulsars. As our
data have relatively poor frequency and time resolution (for this
purpose), we obtained τ d and νd using a structure function analysis
(Rickett et al. 2000) rather than the more standard method of using
the autocorrelation function (ACF) of the dynamic spectrum. The
implementation of this technique is discussed in Appendix B. From
each τ d measurement we have used the definition that Dφ(τ d) = 1
to obtain an estimate of

DDM(τd) = (Kν/2π)2. (10)

4 R E S U LT S

The variation of DM with time, 
DM(t), for each pulsar is shown
in Fig. 2. We list, in Table 3, the bands used for each pulsar and the
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Figure 2. DM variations of 20-ms pulsars. Note a 
DM of 10−4 cm−3 pc corresponds to time delays at 10 cm of 43 ns, at 20 cm of 212 ns and at 50 cm of
884 ns.

interval over which the 
DM(t) values were measured and the slope
of the best-fitting straight line dDM/dt. The panels in Fig. 2 are cho-
sen so that all pulsars have the same time axis, but different scalings
are used for the ordinate. We see large-scale DM variations for
six of our pulsars (PSRs J0437−4715, J1045−4509, J1643−1224,
J1824−2452, J1909−3744, J1939+2134) with a maximum range
in 
DM of ∼0.014 cm−3 pc for PSR J1045−4509.

4.1 Diffractive scintillation parameters

Using the method described in Section 3, we obtained diffractive
scintillation time-scales for 17 of our pulsars, obtaining τ d and νd

values for each observation with a high signal-to-noise ratio. In col-
umn order, Table 4 contains the pulsar name, observing frequency
and the range of our measured τ d and νd values, respectively. For
pulsars where previous measurements exist our results are consis-

tent with values in the literature. The scatter in τ d observations is
much greater than the error bars on individual τ d measurements.
We have confirmed, by simulation, that the reason for this is that
τ d is estimated from observations which are much shorter than the
refractive scale.

For three pulsars it was difficult for us to obtain diffractive time-
scale measurements. For PSR J0437−4715, this is not a problem
as there are many measurements available in the literature. The
diffractive time-scale for PSR J1824−2452 is too short at 20 cm
(less than 1 min) for us to measure. At 10 cm, this pulsar is very weak
(signal-to-noise ratio ∼20 for a 1-h observation), but we were able
to obtain a few usable observations. The τ d for PSR J2124−3358
is relatively long. From the τ d = 44 min at 436 MHz (Johnston,
Nicastro & Koribalski 1998), we can estimate that τ d at 685 MHz
is ∼76 min, but our current observation time for this pulsar is only
32 min.
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Table 3. Summary of the DM variations for the PPTA pulsars.

Band Interval dDM/dt Data span
PSR name (cm) (d) (cm−3 pc yr−1) (yr)

J0437−4715 10, 50 15 1.0(2) × 10−5 3.0
J0613−0200 20, 50 15 −9(2) × 10−5 2.9
J0711−6830 20, 50 15 −2.5(9) × 10−5 2.8
J1022+1001 10, 50 7 −5(60) × 10−6 2.7
J1024−0719 20, 50 15 3.2(9) × 10−4 2.9
J1045−4509 20, 50 15 −5.56(9) × 10−3 2.9
J1600−3053 10, 20 15 −9(2) × 10−4 2.7
J1603−7202 20, 50 15 1.28(5) × 10−3 2.6
J1643−1224 20, 50 15 −1.18(6) × 10−3 2.6
J1713+0747 20, 50 15 5(23) × 10−6 2.7
J1730−2304 20, 50 7 3.9(8) × 10−4 2.5
J1732−5049 20, 50 7 −7(1) × 10−4 2.4
J1744−1134 20, 50 15 5(2) × 10−5 2.7
J1824−2452 20, 50 12 6.0(1) × 10−3 1.1
J1857+0943 20, 50 15 1.5(1) × 10−3 2.2
J1909−3744 20, 50 15 −3.28(6) × 10−4 2.7
J1939+2134 20, 50 15 2.57(2) × 10−4 2.3
J2124−3358 20, 50 15 2.5(8) × 10−4 2.7
J2129−5721 20, 50 7 −2(3) × 10−4 0.9
J2145−0750 20, 50 15 4.0(4) × 10−4 2.4

4.2 Structure functions

We have calculated structure functions from 
DM(t) for each of
our pulsars. Representative examples are shown in Figs 3 and 4. In
these figures, we have included τ d measurements obtained from the
literature (cross symbols) or from our data (open triangle symbols).
For some pulsars, we have been able to derive an estimate of DDM at
large time-lags from dDM/dt measurements in the literature (Hobbs

Table 4. Scintillation parameters from our observations.

Freq. τ d νd

PSR name (MHz) (min) (MHz)

J0613−0200 1369 10–54 0.98–3.1
J0711−6830 685 18–42 1.0–5.4

1369 36–127 30–77
J1022+1001 685 53–184 6.4–40
J1024−0719 685 23–89 4.8–47
J1045−4509 3100 2.2–12 0.64–15
J1600−3053 3100 4.0–23 1.90–6.9
J1603−7202 685 8.6–27 1.5–7.8

1369 7.7–40 1.8–18
J1643−1224 3100 2.6–12 0.89–2.0
J1713+0747 685 20–47 1.8–11
J1730−2304 685 9.3–28 1.2–5.4

1369 17–54 3.9–32
J1732−5049 1369 18–39 1.8–6.2
J1744−1134 685 29–76 4.1–40
J1824−2452 3100 1.1–9.5 0.6–1.1
J1857+0943 685 13–22 2.5–7.8

1369 16–68 2.7–25
J1909−3744 685 16–69 2.8–20
J1939+2134 1369 4.1–10 1.8–5.4
J2129−5718 685 12–39 1.7–4.5

1369 35–79 25–234
J2145−0750 685 20–111 2.9–44

et al. 2004) that were obtained using a single data set;4 such points
are indicated using a full square symbol at the rightmost edge of the
plot. To put the data in context, we have drawn two theoretical lines
fitted through the τ d points, one (full line) with the Kolmogorov
exponent (α = 5/3), the other (dashed–dotted line) with α = 2
corresponding to the steepest possible structure function resulting
from plasma turbulence (Rickett 1990) (hereafter this spectrum is
known as ‘quadratic’). Estimation error bounds on the theoretical
Kolmogorov model (at the 68 per cent confidence level) for each
data point are plotted using solid lines that bracket the theoretical
model.

The remaining symbols used on the figures are as follows. The
structure function values measured from 
DM(t) are plotted using
solid circle symbols. The errors on these points are estimated from
the uncertainty on 
DM(t). For cases where the error is larger than
the value we use downward pointing arrow symbols for the lower
bound on the error bar. As we subtracted the bias due to the un-
certainties on the 
DM(t) measurements, it is possible for large
uncertainties on 
DM(t) that the structure function values are neg-
ative. We indicate such points using open circles and a downward
arrow plotted at DDM(τ ) plus twice its error. The structure function
plots all have the same scaling.

For comparison, we also indicate the value of DDM that would
be expected for white timing residuals with a given rms (σ rms) at
1400 MHz. The relationship between the structure function of the
timing residuals, DTOA, and the structure function of DM variations,
DDM, is

DDM = DTOA(Kν2)2. (11)

If the timing residuals are white, then DTOA = 2σ 2
rms. We indicate,

using solid horizontal lines, white noise with an rms of 1 µs and
100 ns.

For PSRs J1045−4509, J1824−2452 and J1909−3744, we have
added an indication of the inner time-scale (see Section 5.3). For
PSRs J1939+2134 and J1824−2452, we also overlay a dotted line
which is the structure function from earlier work (see Section 5.3).

Our τ d values for PSR J0437−4715 can be compared with the
work of Smirnova, Gwinn & Shishov (2006) who scaled the obser-
vations of Johnston et al. (1998) and Gothoskar & Gupta (2000) by a
large factor, assuming that the scintillation index was much smaller
than unity, although the scintillation index was not reported by the
original observers. Smirnova et al. (2006) deduced a phase structure
function which is two orders of magnitude lower than ours in the
vicinity of τ d.

4.3 Summary of results

For all the pulsars we find that the measured structure functions
lie above the lower error bound of the Kolmogorov model. Two,
PSRs J0437−4715 and J1939+2134, fit the Kolmogorov model
well. Two, PSRs J1045−4509 and J1909−3744, are clearly incon-
sistent with a pure Kolmogorov power law, requiring a large in-
ner scale. One, PSR J1824−2452, has few good τ d measurements,
but may well have τ i > τ d. The remaining 15 pulsars are domi-
nated by white noise at small lags, and for five of these we can-
not constrain the slope of the underlying power-law spectrum. Two
pulsars (PSRs J1744−1134, J1857+0943) could not be classified
on the basis of our measurements, but appear to be Kolmogorov

4 A given dDM/dt measurement can be converted to a single point on a
structure function as (dDM/dt T)2, where T is the data span.
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Figure 3. Structure functions, DDM(τ ) for four pulsars. The τ d derived estimates are marked by triangles from our data and crosses from the literature. The
estimates obtained directly from the time series 
DM(t) as discussed in Appendix A are marked as filled circles with error bars. Open circles indicate a negative
estimate. A Kolmogorov model fit to τ d is shown using a solid line and a quadratic model is shown dash–dotted. Confidence limits on the Kolmogorov model
are solid lines bracketing the model. Equivalent delays at 1400 MHz are shown for 100 ns and 1 µs. For PSR J1022+1001, a point derived from dDM/dt is
shown as a solid box with error bars at the longest time-lag.

on the basis of previously published dDM/dt values. For five pulsars
(PSRs J0613−0200, J1600−3053, J1643−1224, J1713+0747 and
J1732−5049) the structure functions fall below the quadratic model
at large time-lags, strongly suggesting that the underlying spec-
trum is Kolmogorov. The final three pulsars (PSRs J1603−7202,
J1730−2304 and J2124−3358) appear to follow the quadratic
model at large lags. However, it should be realized that the struc-
ture functions at large lags are relatively poorly estimated and this
separation of the pulsars into different categories is not perfectly
clear.

The results described above lead us to propose that the structure
functions for all our pulsars contain an ISM component that is either
a pure Kolmogorov power law or a Kolmogorov power law with a
large inner scale.

5 D I S C U S S I O N O F D M M E A S U R E M E N T S

5.1 Comparison with earlier work

Much of the earlier work has concentrated on measuring (and
modelling) dDM/dt values (e.g. Backer et al. 1993; Hobbs et al.
2004). For comparison with earlier work we have listed in Ta-
ble 3 the slope of the best-fitting straight line across the entire data
set for each of our pulsars, dDM/dt. Our values generally do not
agree with the previously published values. However, for our data
sets, a single dDM/dt value models the observed 
DM(t) values

well only for a few pulsars (PSRs J1045−4509, J1824−2452 and
J1909−3744) and the dDM/dt values for other pulsars are mislead-
ing. For instance, for PSR J0437−4715 our results indicate that the
DM evolution for this pulsar can roughly be described using three
dDM/dt values: prior to MJD 53400, dDM/dt = (−2.98 ± 0.07)
× 10−4 cm−3 pc yr−1; between MJD 53400 and 53700, dDM/dt =
(6.2 ± 0.2) × 10−4 cm−3 pc yr−1 and subsequently dDM/dt =
(3 ± 1) × 10−5 cm−3 pc yr−1. Clearly, the 
DM(t) values are better
described using the structure function.

5.2 The solar wind

The solar wind leads to a significant change in DM for pulsars close
to the ecliptic plane during close approaches of the line of sight
to the pulsar with the Sun. According to the TEMPO2 model de-
scribed in Section 2, an unmodelled solar wind contributes ∼100 ns
at 1400 MHz for sources within 60◦ of the Sun and ∼1 µs within 7◦.
It is therefore clear that corrections are necessary for 18 out of our
20 PPTA pulsars. The correction can potentially be made by mod-
elling the solar wind or by directly measuring the DM to sufficient
accuracy using multiple frequency observations.

The solar wind varies with time and position. An overview of the
relevant solar physics can be found in Schwenn (2006). Most of the
variations in the solar wind are ascribed to a slowly changing spatial
pattern that rotates with a 27-d period. In addition, global transients,
called coronal mass ejections (CME), occur every few days. The
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Figure 4. Same as for Fig. 3, but for another four pulsars. For PSRs J1643−1224 and J1939+2134, a point derived from dDM/dt is shown as a solid box with
error bars at the longest time-lag.

chances of a given observation, which typically has a duration of
30–60 min, encountering a CME are only a few per cent, so these
are not the most important effects. The quasi-static spatial pattern is
roughly bimodal, the ‘slow solar wind’ with high electron density
is concentrated within about ±20◦ (McComas et al. 2000) and the
‘fast solar wind’ with lower electron densities at higher latitudes.
The density difference is a factor of 4 at 1 au and increases near the
Sun. The correction necessary for a given observation can then vary
by a factor of 4 depending on how much of the line of sight is in the
slow versus the fast wind.

Corrections for the solar wind have been attempted in both TEMPO

and TEMPO2. Both programs implement constant-density spheri-
cally symmetric models. TEMPO uses a high density model where
the electron density at 1 au, ne(1 au) = 10 cm−3, whereas TEMPO2
has a lower density model of ne(1 au) = 4 cm−3. Splaver et al.
(2005) and Lommen et al. (2006) used an identical spherically
symmetric model, but fitted for the electron density. They obtained
ne(1 au) = 5 ± 4 cm−3 and ne(1 au) = 6.9 ± 2.1 cm−3, respectively.
However, it is not possible for a spherically symmetric model to cor-
rect the average timing residual due to the large difference in density
between the fast and slow winds. This is clearly demonstrated by our
PSR J1022+1001 observations. The left-hand panel in Fig. 5 shows
the DM variations of this pulsar without correcting for the solar
wind and gives the correction from the TEMPO2 model as a dashed
line. The right-hand panel shows the DM variations after correction
using the TEMPO2 model. During the year 2004, the TEMPO2 model
did accurately correct the effect. The original TEMPO model which
uses a larger electron density overcorrects these observations. The
opposite occurs during 2005, when the TEMPO2 model undercorrects

the observations whereas the original TEMPO models the solar wind
well.

It is possible to use coronal measurements to improve our cor-
rection by estimating which parts of the line of sight are in the
fast and which in the slow wind. This can be demonstrated with
our PSR J1022+1001 data, but it is not yet clear whether using an
updated model to correct the observations improves on simply mea-
suring the excess DM using multifrequency observations. This work
will be reported in a future publication.

5.3 Spectrum of the ISM

All but six pulsars are consistent with a Kolmogorov fluctuation
spectrum with an inner time-scale smaller than τ d. The clearest
examples are PSRs J0437−4715 and J1939+2134. The structure
function for PSR J0437−4715 lies slightly above the upper bound
of the Kolmogorov model fit to the τ d data. However, if the τ d data
were divided by a factor of 1.35 they would be consistent. A line
with this shift is shown in Fig. 3(a) through the τ d data. Given the
large scatter in τ d we consider that there is no evidence for an inner
scale, nor do we see a need to rescale Dφ(τ d) as did Smirnova et al.
(2006). The structure function at the largest time-scales is currently
consistent with a Kolmogorov process, but there is an indication that
the structure function may be flattening at these scales, as if an outer
scale around 60 au were present. We do not expect such a small outer
scale, but it is not impossible if the turbulence has inhomogeneities
of this order. Such structures could be caused, for example, by shear
instabilities or due to a large-scale damping mechanism such as
ion–neutral damping. The presence or absence of this flattening will
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Figure 5. DM variations of PSR J1022+1001. The dashed curve is the TEMPO2 modelled DM� values. Panel (a) shows the DM variations with no correction
for the solar wind. Panel (b) shows the DM variations after correction by the model used in TEMPO2.

become clearer in a few years, as we accumulate more observations
of this pulsar.

There have been several analyses of the structure function for
PSR J1939+2134 (Cordes et al. 1990; Ramachandran et al. 2006).
The recent result of Ramachandran et al. (2006) is overlaid on our
structure function in Fig. 4(d). They fitted for the power-law expo-
nent and obtained α = 1.66 ± 0.04. They also compare their DDM

with a single τ d measurement of 180 s. This comparison suggests
an inner scale of 1.3 × 109 m. Our DDM observations are slightly
above the Kolmogorov model fit to the τ d observations. However, as
with PSR J0437−4715 there is a large scatter in τ d. A shift of 1.43,
shown as a solid line through the data in Fig. 4(d), would make the
DDM consistent. Thus we believe that the case for an inner time-scale
greater than τ d is weak for this pulsar.

The structure functions for PSRs J1045−4509 and J1909−3744
both lie well above the upper bound of the Kolmogorov spectrum
and require an inner scale which is much larger than Vτ d. We can
identify a break in the structure function for PSR J1045−4509 which
suggests an inner time-scale of about 12 d. The observations of
PSR J1909−3744 can set a lower bound on the inner time-scale of
500 d. To our knowledge these are the first observations of such large
inner scales. In order to estimate the corresponding spatial scales
we use V ≈ 3.85 × 104(νdD)1/2/(ν τ d) for a thin screen (Gupta,
Rickett & Lyne 1994). In both cases the inner scales of 0.7 and
20 au are comparable to or larger than the refractive scales of 0.38
and 0.19 au, respectively.5 These scales are so large that they can
only be compared with ion–neutral damping scales. Ion–cyclotron
damping at such scales would require absurdly low densities (see
equation 8).

Measurements of the structure function for PSR J1824−2452
have been published by Cognard & Lestrade (1997) and shown
to be consistent with a Kolmogorov process. In Fig. 4(b) we overlay
the earlier structure function (dotted line) with our results. The two
analyses are consistent. Our τ d estimates suggest that τ i > τ d, but
because there are few measurements of τ d and the inferred τ i is not
as a large as for PSRs J1045−4509 and J1909−3744, the evidence
for a large inner scale is weak.

In analysing the structure functions we have assumed that the line-
of-sight velocity is constant. However, the true velocity is a vector
sum, weighted by the distance of the scattering plasma, of the pulsar

5 The refractive time-scales are found using tr ≈ 2ν/νdτ d (Rickett 1990).

proper motion, the orbital velocity for binary pulsars, the velocity of
the plasma with respect to the local standard of rest and the orbital
velocity of the earth (Rickett et al. 2000). For many of our pulsars
these effects are important. 13 of our pulsars are in binary systems,
and in five of those the orbital velocity is comparable with the proper
motion. In all five of these plus another four non-binary pulsars the
Earth’s orbital velocity is also comparable. For these pulsars the
magnitude and direction of the velocity can change significantly,
both on a time-scale of days and annually.

Diffractive observations are made on a time-scale which is short
compared to the orbital periods, so such observations are affected
by the instantaneous vector sum of velocities. DM variations are
normally averaged over times longer than the typical binary periods
in our sample, but shorter than a year. Thus these measurements are
not affected by the binary orbital velocity. On average the diffractive
observations see a higher velocity than the DM observations which
will lead to the temporal structure function being flatter than the
spatial structure function. If the turbulence in the interstellar plasma
is anisotropic, and there is increasing evidence that such anisotropy
is common, then the apparent diffractive time-scale will depend
strongly on the direction of the velocity.

The net effect on our estimation of the structure function of DM
is not large, because four of our five best-constrained observations
have relatively small velocity modulation. However, observations
of the solitary pulsar PSR J1939+2134 are strongly modulated by
the Earth’s orbital velocity. In this case both diffractive and DM
observations see the same time-varying velocity so the slope of
the structure function is not altered, but both observations will be
‘noisier’ than expected. In fact, the DDM(τ ) for this pulsar is noisier
than expected, suggesting that we are seeing the effect of annual
variations in velocity. This effect is largest in PSR J2145−0750, for
which the proper motion and orbital velocity are both similar to the
Earth’s orbital velocity. This pulsar shows a wider spread in τ d than
most. The structure function for this pulsar is white noise dominated,
making it difficult to estimate its slope of the structure function. The
expected velocity modulation makes it even more difficult, so even
though the structure function appears to be Kolmogorov on the basis
of a single dDM/dt value, more observations are required to confirm
this.

In PSRs J1045−4509 and J1909−3744 we observe intensity vari-
ations at the diffractive time-scale. However, if the inner scales were
greater than the refractive scales as they appear to be, then the struc-
ture function is quadratic and no intensity scintillation should be
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observed (Wandzura 1980).6 Thus there must be an underlying Kol-
mogorov process which is roughly equal in amplitude to the steep-
spectrum process at τ d.

This situation has been proposed theoretically (Zweibel, private
communication). It can arise when the primary energy input to the
turbulence is at scales larger than the ion–neutral damping scale.
Energy will cascade down to the ion–neutral scale where most of it
will be absorbed. However, some energy may ‘tunnel’ through the
damping region to support a second Kolmogorov cascade at a lower
level (in the vicinity of the ion–neutral collision frequency, plasma
waves are evanescent).

In the case of PSR J1045−4509 the energy difference is about a
factor of 30. For PSR J1909−3744 we can only say that the energy
difference is at least a factor of 30. This is a very intriguing pos-
sibility which requires both observational and theoretical follow-
up. The existence of steep spectra might be confirmed by very
long baseline interferometry (VLBI) observations which should
show an rms position wander of λ/(2πVτ d) on a time-scale of
the inner time-scale (where λ is the wavelength). The baselines
needed for a 1 rad rms phase difference are Vτ d, where τ d scales
as ν1.2. This is about 8000 km for PSR J1045−4509 and 6000 km
for PSR J1824−2452 at 1400 MHz. It would be much more diffi-
cult to measure PSR J1909−3744 as the baseline, even at 327 MHz,
would be 50 000 km and the time-scale for position wander would
be greater than 500 d.

5.4 White noise

12 of our pulsars show a well-defined flattening of the structure
functions at small lags which indicates the presence of a white-
noise process that is substantially greater than the measurement
error. Although this has not been discussed in the context of DM
measurements before, it is a well-known anomaly in TOA mea-
surements. Observers have often rescaled their measurement error
estimates to match this white noise, but it is not clear that the ad-
ditional white noise is due to measurement error. It could be due
to a process intrinsic to the pulsar, unexplained calibration issues
or to diffractive TOA noise. The latter process will have the same
time-scale as diffractive intensity scintillation and is highly corre-
lated with the intensity scintillation. Its rms is of the order of τ 0 =
1/(2πνd). Although this phenomena has not been well studied, it
has been observed directly (Lestrade, Rickett & Cognard 1998) and
discussed theoretically (Romani, Narayan & Blandford 1986). We
have compared the observed white noise rms with τ 0 for each pulsar
and find that this mechanism will need to be considered for four of
the PPTA pulsars: PSRs J1045−4509, J1600−3053, J1643−1224
and J1939+2134. Since this mechanism is correlated with intensity
it may be possible to use intensity measurements to correct it. It is
likely that most of the white noise is related to system calibration
errors as it is known, at least for some pulsars, to depend on the
observing frequency and backend instruments.

6 C O R R E C T I O N O F R E S I D UA L S F O R D M
VA R I AT I O N S

During the design of the PPTA project it was realized that DM vari-
ations would be an important source of timing noise and, unless

6 A pure quadratic structure function corresponds to a linear phase gradient,
which simply shifts the apparent position of the source and does not change
the intensity.

Figure 6. Timing residuals for PSR J1939+2134. Panel (a) shows the timing
residuals before DM correction. Panel (b) contains the timing residuals after
correcting for the DM variations using a 71-d smoothing. Panel (c) shows
the residuals obtained using the corrected parameters with the uncorrected
TOAs.

corrected, would obscure the signature of many interesting phe-
nomena such as gravitational waves. Initial expectations were that
observations using the dual-band receiver would be used to deter-
mine 
DM(t) which, in turn, would be used to correct the 20-cm
timing residuals. Of course, the measurements of DM include a
white-noise component discussed earlier and hence, the correction
for the ‘red’ DM variations adds white noise. Smoothing the DM
data before making the correction will reduce the white noise more
than the DM noise. However, choosing the optimal smoothing is
non-trivial.

The problem is that the timing model includes numerous terms
such as parallax, position, proper motion, period and period deriva-
tive that absorb some of the residuals due to DM variations. Fitting
the timing model to the residuals can substantially reduce the effect
of DM variations, but causes significant errors in the fitted param-
eters. We cannot use the post-fit rms timing residual as a goodness
measure, since it would not change at all after correction if the DM
effect has been totally absorbed in the fitted parameters. Accordingly
we have calculated the optimal smoothing factor using a simple an-
alytical model which requires equally spaced observations. We have
also simulated the observations at the actual sampling intervals with
known model parameters and determined the optimal smoothing for
the simulated data without having to fit a timing model. This work
is outlined in Appendix C.

An example of the correction process is shown in Fig. 6. We have
shown the post-fit residuals for PSR J1939+2134 before correction
(with an rms timing residual of 0.291 µs), and after correction (rms
of 0.193 µs). We can assume that the timing model after correction
is much more accurate than before correction. Therefore, we have
plotted the residuals of the uncorrected data using the more accurate
corrected model resulting in an rms of 0.941 µs. The total proper
motion, pulse frequency and frequency derivative were changed
during the correction process by 7σ , 28σ and 28σ , respectively.

Fig. 6 shows clearly the necessity of correction for DM variations,
and it also shows how fitting a timing model can spuriously remove
a ‘red’ process. For instance, if the TOA variations included the sig-
nature of a gravitational wave which resembled the DM variations
(both are expected to have a steep, ‘red’ signature) then fitting the
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Table 5. Improvement of timing residuals after correction for the DM vari-
ations.

PSR name T theory
sm Tsimu.

sm σ orig σ cor. σ uncor.

(d) (d) (µs) (µs) (µs)

J1939+2134 100 71 0.291 0.193 0.941
J1824−2452 54 51 0.937 0.883 4.111
J0437−4715 243 91 0.396 0.316 0.509
J1909−3744 163 211 0.192 0.186 0.605
J1045−4509 116 201 3.862 3.800 9.386
J1643−1224 281 361 2.770 2.732 3.200

timing model would also have removed most of the gravitational
wave signature. Fortunately, as the duration of the timing data in-
creases it becomes harder for the timing model to emulate either
the DM variations or the signature of gravitational waves. This is
because the terms related to the motion of the Earth have annual or
semi-annual periods so they are not as effective at removing longer
period variations.

The process described above has also been applied to five other
pulsars for which DM fluctuations are important. For each of these
pulsars, the theoretical smoothing time for uniformly sampled data
and the actual optimal smoothing time from the simulation are given
in the first two columns of Table 5. The rms timing residuals cor-
responding to the three panels of Fig. 6, ‘original’, ‘corrected’ and
‘true uncorrected’ (where the corrected pulsar parameters are used to
model the uncorrected TOAs), are tabulated in the last three columns
of the table. There is a correlation between the improvement of
the residuals and the slope of 
DM(t). The pulsars with the least
slope, PSRs J0437−4715 and J1939+2134, showed the most im-
provement in rms after correction for the DM variations. This is
because a linear slope can be corrected exactly, but spuriously, in
the original fitting. The 
DM(t) values for all except the last pulsar
in the table are dominated by the plasma contribution. These all
show significantly higher ‘true uncorrected’ residuals demonstrat-
ing that the correction process was important even though it may not
have significantly lowered the rms timing residuals. The last pulsar,
PSR J1643−1224, is dominated by white noise and does not show
much improvement in residual, nor is the true uncorrected residual
much larger. As the PPTA continues to collect more data, the DM
corrections will become increasingly important and will have to be
applied to more of the observed pulsars.

7 C O N C L U S I O N S

We have shown that correction for the plasma delay is essential for
the purposes of the PPTA project and have developed an optimal
way of applying this correction.

We also show that the spherically symmetric solar wind models
included in the pulsar timing packages TEMPO and TEMPO2 are of
marginal value. More sophisticated models may be useful, espe-
cially in situations where it is difficult or impossible to measure the
DM variations directly.

We have analysed the observed DM variations and found that
most are consistent with a simple Kolmogorov model of interstellar
turbulence with dissipation at a relatively small scale such as would
be caused by ion–cyclotron damping. However, at least two of the
15 pulsars for which we can estimate the spectral exponent require
a steeper spectrum and suggest strongly that ion–neutral collisions
are important in damping the turbulence spectrum at astronomical
unit scales.
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A P P E N D I X A : C A L C U L AT I O N O F T H E
S T RU C T U R E F U N C T I O N

Let Dest(τ ) be the estimated structure function for the DM variations
at time-lag τ . As described in Section 2, we assume that the errors on
the 
DM(t) values are independent, Gaussian and have known, but
different, standard deviations. The bias and error that these errors
contribute to Dest(τ ) are obtained by expanding each Dest(τ ) as

Dest(τ ) = 1

Np

{∑
i j

[
DM(i) − 
DM( j)]2

+
∑

i j

[e(i)2 + e( j)2]

+ 2
∑

i j

[e(i) − e( j)][
DM(i) − 
DM( j)]

− 2
∑

i j

e(i)e( j)

}
, (A1)

where Np is the number of pairs, 
DM(i) is the 
DM within the
time-lag ‘bin’ τ and e(i) is the corresponding error. The first term
in this expansion is the desired estimator and the other terms are
uncorrelated errors. The second term is the only error term that does
not have zero mean and so contributes a bias which must be calcu-
lated and subtracted from DDM(τ ). The variances of each term are
easily calculated and summed to give the total variance in DDM(τ ).
So finally, the calculated DDM(τ ) is

DDM(τ ) = 1

Np

{∑
i j

[
DM(i) − 
DM( j)]2

−
∑

i

Niε(i)2

}
, (A2)

where ε(i) is the rms of the e(i), Ni is the number of times that

DM(i) is used to calculate the DDM(τ ). The variance of the DDM(τ )
is

σ 2
DDM

(τ ) = 1

N 2
p

{
2
∑

i

N 2
i ε(i)4

+ 4
∑

i

∑
j

ε(i)2[
DM(i) − 
DM( j)]2

+ 4
∑

i j

ε(i)2ε( j)2

}
. (A3)

We have developed a TEMPO2 plug-in that is publicly available
(download and usage instructions are given in Appendix D) to carry
out these calculations.

A P P E N D I X B : C A L C U L AT I O N O F T H E
D I F F R AC T I V E T I M E - S C A L E A N D
BA N DW I D T H

The structure function of DM variations can be related to the diffrac-
tive time (τ d) using equation (5). Normally, the parameters of

diffractive interstellar scintillation (time-scale τ d and decorrelation
frequency scale νd) are obtained using a two-dimensional ACF of
the dynamic spectrum S(ν, t) as

C(
ν, 
t)

= 1

Np(
ν, 
t)

∑
ν

∑
t


S(ν, t)
S(ν + 
ν, t + 
t), (B1)

where Np is the number of pairs. 
S(ν, t) = S(ν, t) − S̄, where
S(ν, t) is the flux density and S̄ is the mean flux density for the
whole observation. The diffractive parameters are defined by C(0,
τ d) = C(0, 0)/e and C(νd, 0) = C(0, 0)/2. The parameters τ d and νd

are obtained by fitting a two-dimensional Gaussian to C(
ν, 
t).
However, we often have an observed dynamic spectrum which is
not much longer than τ d and wider than νd.

We use a method based on the structure function instead of ACF
to estimate the diffractive time-scale. In our data, the ACF is biased
because we have few scintles in the dynamic spectra. For such cases
the structure function, defined as D(
t) = [S(t) − S(t + 
t)]2/Np,
is a better estimator because it does not require estimation of S̄. If
C(
t) exists, then D(
t) = 2[C(0) − C(
t)]. We estimate D(
t) as

D̃(
t) = 1

Np(
t)

∑
ν

∑
t

[
S(ν, t) − 
S(ν, t + 
t)]2 . (B2)

Because there is receiver noise which is white, the measured
structure function is

Dm(
t) = D(
t) + Dw = 2C(0) − 2C(
t) + Dw(
t), (B3)

where Dw is the structure function for the white noise:

Dw(
t) = 2σ 2(
t > 0)

= 0(
t = 0),
(B4)

where σ is the standard deviation of S(ν, t) measured over the entire
data-span.

If we normalize the flux density, then S̄ = 1. For our observa-
tions, the diffractive scintillation is strong and the observing time
is much less than the refractive time-scale, so C(0) = 1. From the
Kolmogorov spectrum, C(
t) = exp[−(
t/τ d)5/3].

So finally we can write the measured structure function as

Dm(
t) = 2
[
1 − exp(−(
t/τd)5/3)

] + Dw(
t). (B5)

The uncertainty σDm (
t) is estimated as σDm (
t) =
Dm(
t)

√

t/To, where To is the observation time. We choose the

equal log time-interval points to fit because when 
t is large, the
points are not independent. Then we can fit the parameters τ d and
Dw in equation (B5) to obtain the diffractive time-scale τ d.

A similar analysis can be used to obtain the diffractive band-
width, νd. However, in contrast to the determination of τ d, we do
not know the form of C(
ν) and, hence, it is not possible to fit for
νd and Dw(
ν). However, Dw(
ν) = 2σ 2 ≈ Dm(
νm), where 
νm

is the minimum frequency lag (in our data, it is typically 0.5 MHz).
Dw(
ν) is the bias term which must be subtracted. This leads to the
structure function being

Ds(
ν) = Dm(
ν) − Dm(
νm) = 2C(0) − 2C(
ν). (B6)

After normalization [C(0) = 1] and according to the definition of
νd [C(νd) = C(0)/2 = 1/2], we can obtain νd when Ds(
ν) = 1.

A P P E N D I X C : C A L C U L AT I N G T H E O P T I M A L
S M O OT H I N G T I M E

Let tg1 and tg2 be idealized TOAs that are affected by neither
noise nor DM variations. These TOAs correspond to frequencies
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ν1 and ν2, respectively, where ν1 > ν2. Similarly, tg1o and tg2o

are observed TOAs at these frequencies which have been affected
by noise and DM variations. So the observed TOAs are given
by

tgio = tgi + ni (t) + 
DM(t)

K
ν−2

i , (C1)

where ni (t) is the noise at νi which is assumed to be white (i = 1,
2 for the two observations, respectively). The measured estimate of
DM(t) is therefore given by

D̃M(t) = [tg2o(t) − tg1o(t)]
K

ν−2
2 − ν−2

1

= (tg2 − tg1)
K

ν−2
2 − ν−2

1

+ 
DM(t)

+ [n2(t) − n1(t)]
K

ν−2
2 − ν−2

1

. (C2)

After correcting for the DM variations, by subtracting the corre-
sponding time offsets from tg1o, we obtain a set of corrected TOAs,
tg1c(t), which are given by

tg1c(t) = tg1o(t) − D̃M(t)

K
ν−2

1

= tg1a1 − tg2a2 + n1(t)a1 − n2(t)a2, (C3)

where a1 = ν−2
2 /(ν−2

2 − ν−2
1 ) and a2 = ν−2

1 /(ν−2
2 − ν−2

1 ). Note
that, since a1 − a2 = 1, contributions to the timing residuals which
are frequency independent and thus the same in tg1 and tg2, appear
unchanged in tg1c. This is an important property of the correction
algorithm because interesting contributions such as the signature of
gravitational waves, planets orbiting the pulsar or ephemeris errors
are unaltered by the correction.

Comparing equations (C1) and (C3) we see that the variance of
the white noise has increased from σ 2

N1 to σ 2
N1a2

1 + σ 2
N2a2

2 although
the DM noise has been eliminated. We can improve the variance
in tg1c by smoothing D̃M(t) before subtracting it from tg1o, because
smoothing reduces the white noise more than the DM(t) variations.
The white variance in D̃M(t) is reduced by the smoothing number Ns.
It is hard to calculate the effect of smoothing DM(t) analytically, but
we found numerically that the variance of equally sampled [DM(t) −
smoothed (DM (t))] ≈ 0.5 DDM(Tsm/2π), where Tsm = (Ns − 1)τ 0

and τ 0 is the sampling time (typically 15 d). However, the white
noise in the smoothed D̃M(t) is partially correlated with that in tg1o,

so we have finally the variance in tg1c:

σ 2
1csm = σ 2

N1 +
(
σ 2

N1 + σ 2
N2

)
a2

2

Ns
+ 2a2σ

2
N1

Ns

+ 1

2

(
1

kν2
1

)2 (
Ns − 1

2π

)α

DDM(τ0). (C4)

We minimize this numerically. In fact, the data are not equally sam-
pled so we first interpolate the raw data on to an equally spaced
array before smoothing. To check the effect of resampling we com-
pared the theory above with a simulation. We realised 50 samples
of DM(t) from a population matching DM(τ ) with the actual data
sampling. Then we interpolated the simulated data on to an equally
spaced array and found the Ns which best corrected for DM(t). In
all cases the minimum is very broad so it makes little difference
whether one uses the theoretical or simulated value of Ns. However,
the simulation is easy to implement and will be correct even in the
case of an unusual distribution of samples.

A P P E N D I X D : AVA I L A B L E S O F T WA R E

The TEMPO2 software was designed to allow for easy addition
of new features and functionality in the form of plug-ins to the
main package. During this work we have produced the follow-
ing new plug-in packages which are now available as part of the
TEMPO2 distribution (full details are available from our web-site
http://www.atnf.csiro.au/research/pulsar/tempo2).

(i) CALCDM: this plug-in contains the algorithms described in this
paper. This plug-in allows the user to calculate and plot 
 DM(t)
and obtain the corresponding structure function.

(ii) SF: calculates and plots the structure function of the timing
residuals.

(iii) SIMISM: allows data sets to be simulated in order to study
the effect of a Kolmogorov process on pulsar timing residuals.

The program DIFFTIME can be used to calculate τ d and νd for
most pulsar observations. This software is available as part of the
PSRCHIVE software distribution (http://psrchive.sourceforge.net).

Software to simulate the effect of refraction on τ d estimates is
in the SIM 2.0 distribution from UCSD: http://typhoon.ucsd.edu/
∼coles/sim2.0/sim2.0.html.
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