Mon. Not. R. Astron. Soc. 000, 2-23 (2004) Printed 2 March 2004 (MN ATEX style file v2.2)

The HIPASS Catalogue: II — Completeness,

Reliability, and Parameter Accuracy

M. A. Zwaan,"?* M. J. Meyer,!® R. L. Webster,! L. Staveley-Smith,*

M. J. Drinkwater,” D. G. Barnes,! R. Bhathal,® W. J. G. de Blok,”

M. J. Disney,” R. D. Ekers,* K. C. Freeman,® D. A. Garcia,” B. K. Gibson,*

J. Harnett,'© P. A. Henning,'' M. Howlett,® H. Jerjen,® M. J. Kesteven,*

V. A. Kilborn,'2? P. M. Knezek,'® B. S. Koribalski,* S. Mader,* M. Marquarding,*
R. F. Minchin,” J. O’Brien,® T. Oosterloo,'* M. J. Pierce,” R. M. Price,!!

M. E. Putman,”® E. Ryan-Weber,* S. D. Ryder,'® E. M. Sadler,'” J. Stevens,!

I. M. Stewart,'® F. Stootman,® M. Waugh,! and A. E. Wright*

L School of Physics, University of Melbourne, VIC 3010, Australia.
2 European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching b. Miinchen, Germany.

3 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore MD 21218, USA.

4 Australia Telescope National Facility, CSIRO, P.0O. Boz 76, Epping, NSW 1710, Australia.

5 Department of Physics, University of Queensland, QLD 4072, Australia.

6 Department of Physics, University of Western Sydney Macarthur, P.O. Boz 555, Campbelltown, NSW 2560, Australia.
7 Department of Physics € Astronomy, University of Wales, Cardiff, P.O. Bozx 913, Cardiff CF2 3YB, U.K.

8 Research School of Astronomy & Astrophysics, Mount Stromlo Observatory, Cotter Road, Weston, ACT 2611, Australia.
9 Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Boz 218, Hawthorn, VIC 3122 Australia.
10 University of Technology Sydney, Broadway NSW 2007, Australia.

I Institute for Astrophysics, University of New Mezico, 800 Yale Blvd, NE, Albuquerque, NM 87131, USA.

12 Jodrell Bank Observatory, University of Manchester, Macclesfield, Cheshire, SK11 9DL, U.K.

13 WIYN, Inc. 950 North Cherry Avenue, Tucson, AZ, USA.

14 ASTRON, P.O. Boz 2, 7990 AA Dwingeloo, The Netherlands.

15 CASA, University of Colorado, Boulder, CO 80309-0389, USA.

16 Anglo-Australian Observatory, P.O. Box 296, Epping, NSW 1710, Australia.

17 School of Physics, University of Sydney, NSW 2006, Australia.

18 Department of Physics & Astronomy, University of Leicester, Leicester LE1 7RH, U.K.

Accepted 02-03-2004, Received 01-08-2003

© 2004 RAS



2 M.A. Zwaan et al.

ABSTRACT

The H1 Parkes All Sky Survey (HIPASS) is a blind extragalactic H1 21-cm
emission line survey covering the whole southern sky from declination —90°
to +25°. The Hipass catalogue (HICAT), containing 4315 H 1-selected galaxies
from the region south of declination +2°, is presented in Meyer et al. (2004a,
Paper I). This paper describes in detail the completeness and reliability of
HicAT, which are calculated from the recovery rate of synthetic sources and
follow-up observations, respectively. HICAT is found to be 99 per cent com-
plete at a peak flux of 84 mJy and an integrated flux of 9.4 Jykms~!. The
overall reliability is 95 per cent, but rises to 99 per cent for sources with peak
fluxes > 58 mJy or integrated flux > 8.2 Jykms~!. Expressions are derived
for the uncertainties on the most important HICAT parameters: peak flux,
integrated flux, velocity width, and recessional velocity. The errors on HICAT
parameters are dominated by the noise in the HIPASS data, rather than by

the parametrization procedure.

Key words: methods: observational — methods: statistical — surveys — radio

lines: galaxies — galaxies: statistics

1 INTRODUCTION

The H1 Parkes All Sky Survey (HiPAss) is a blind neutral hydrogen survey over the entire
sky south of declination +25°. One of the main objectives of the survey is to extract a sample
of HI-selected extragalactic objects, which can be employed to study the local large scale
structure and the properties of galaxies in a manner free from optical selection effects. In
Meyer et al. (2004a, paper I, hereafter) we present the HiPASS sample of 4315 H I-selected
objects from the region south of declination +2°. This sample, which we refer to as HICAT,
forms the largest catalogue of extragalactic H 1-selected objects to date. In paper I the
selection procedure of HICAT is described in detail, along with a discussion of the global
sample properties and a description of the catalogue parameters that have been released
to the public. The scientific potential of HICAT is very large, but to make optimal use of
the catalogue it is essential that the completeness and reliability are well understood and
quantified. Only after an accurate assessment of the completeness and reliability is it possible

to extract from the observed sample the intrinsic properties of the local galaxy population.

* E-mail: mzwaan@eso.org (MZ), martinm@stsci.edu (MM), rwebster@ph.unimelb.edu.au (RW), lister.staveley-smith@csiro.au

(LSS)
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HICATIT 3

For optically-selected galaxy samples, this procedure is relatively straightforward since
most optically-selected galaxy samples are purely flux-limited, possibly complicated by the
reduced detection efficiency of objects with low optical surface brightness (see e.g., Lin et
al 1999, Strauss et al. 2002, Norberg et al. 2002). Since the H1 21-cm emission of galaxies
is localized in a narrow region of velocity space, blind 21-cm surveys need to cover the two
spatial dimensions and the velocity dimension simultaneously. The advantage of this is that
the survey yields redshifts simultaneously with the object detections, and follow-up redshift
surveys are not required. However, this extra dimension complicates the detection efficiency.
The ‘detectability’ of a 21-cm signal depends not only on the flux, but also on how this flux
is distributed over the velocity width of the signal.

In this paper we take an empirical approach to this problem, and determine the com-
pleteness of HICAT by the recovery rate of synthetic sources that have been inserted in the
data. The reliability is determined by follow-up observations of a large number of sources.
Our aim is to describe in detail the completeness and the reliability of HICAT as a function
of various catalogue parameters, in such a way that future users can make optimal use of
HicAT in studies of e.g., the H1 mass function, the local large scale structure, the Tully—
Fisher relation, etc. We also discuss in detail the errors on the HICAT parameters, determine
expressions to estimate errors and estimate what fraction of the error is determined by noise
and what fraction by the parametrization.

The organization of this paper is as follows: in Section 2 a brief review of the HiPASS
surveys is given. In Section 3 the completeness of HICAT is calculated using three independent
methods. Section 4 details the follow-up observations and the evaluation of the reliability.

In Section 5 errors on HICAT parameters are calculated.

2 THE HIPASS SURVEY

The observing strategy and reduction steps of HIPASS are described in detail in Barnes et
al. (2001). A full description of the galaxy finding procedure and the source parametrization
is given in Paper 1. Here we briefly summarize the HiPAss specifics.

The observations were conducted in the period from 1997 to 2000 with the Parkes' 64-m

radio telescope, using the 21-cm multibeam receiver (Staveley-Smith et al. 1996). The tele-

1 The Parkes telescope is part of the Australia Telescope, which is funded by the Commonwealth of Australia for operation as

a National Facility managed by CSIRO.
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scope scanned strips of 8° in declination and data were recorded for thirteen independent
beams, each with two polarizations. A total of 1024 channels over a total bandwidth of 64
MHz were recorded, resulting in a mean channel separation of Av = 13.2 kms~! and a veloc-
ity resolution of v = 18 kms™! after Tukey smoothing. The data are additionally Hanning
smoothed for parameter fitting to improve signal-to-noise, giving a final velocity resolution
of 26.4 km s~!. The total velocity coverage is —1280 to 12700 km s~!. After bandpass calibra-
tion, continuum subtraction and gridding into 8° x 8° cubes, the typical root-mean-square
(rms) noise is 13 mJy beam™!. This leads to a 30 column density limit of ~ 6 x 10'7cm™2
per channel for gas filling the beam. The spatial resolution of the gridded data is 15'5.

The basic absolute calibration method used for HIPASS is described by Barnes et al.
(2001). The absolute flux scale was determined during the first HIPASS observations in Febru-
ary 1997 by calibrating a noise diode against the radio sources Hydra A and 1934-638 with
known amplitudes (relative to the Baars et al. 1977 flux scale). The calibration was checked
regularly (on average three time each year) by re-observing the two calibration sources. The
r.m.s. of the flux measurements averaged over all 13 beams and two polarizations is 2%,
which gives a good indication of the stability of the absolute flux calibration.

Two automatic galaxy finding algorithms were applied to the HiPASS data set to identify
candidate sources. To avoid confusion with the Milky Way Galaxy and high velocity clouds,

! was excluded from the list. The resulting list of potential

the range vgsg < 300 kms™
detections was subjected to a series of independent manual checks. First, to quickly separate
radio frequency interference and bandpass ripples from real H1 sources, two manual checks
were done examining the full detection spectra. Detections that were not rejected by both
checks were then examined in spectral, position, RA-velocity, and dec-velocity space. Finally,

the detections were parametrized interactively using standard MIRIAD (Sault, Teuben,&

Wright 1995) routines. This final catalogue of H I-selected sources is referred to as HICAT.

3 COMPLETENESS

The completeness C of a sample is defined as the fraction of sources from the underlying
distribution that is detected by the survey. For an H 1-selected galaxy sample, C' is dependent
on the peak flux, Sy, and the velocity width, W, or alternatively on a combination of both.

One way of determining the completeness is through analytical methods. For example,
for the AHISS sample presented in Zwaan et al. (1997), a ‘detectability’ parameter was

© 2004 RAS, MNRAS 000, 2-23
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calculated, which depended on the distance of the detection from the center of the beam,
the variation of feed gain with frequency, the velocity width, and the integrated flux. The
completeness was assumed to be 100 per cent if the detectability > 1, corresponding to the
requirement that S, be larger that 5 times the local rms noise level after optimal smoothing.
This analytically derived detectability was then compared with the survey data and proved
to be a satisfactory description of the survey completeness. Rosenberg & Schneider (2002)
used an empirical approach to assess the completeness of their Arecibo Dual-Beam Survey
(ADBS), by inserting a large number of synthetic sources throughout the survey data. By
determining the rate at which the synthetic sources could be recovered, they established the
completeness, which they expressed as a function of signal-to-noise.

In this paper we also choose to assess the completeness of the HIPASS sample by inserting
in the data a large number of synthetic sources, prior to running the automatic galaxy finding
algorithms (see Paper I). The actual process of source selection is a multi-step process, which
is partly automated and partly based on by-eye verification. It is therefore preferable to study
the completeness empirically instead of analytically.

The synthetic sources were constructed to resemble real sources, and were divided into
three groups based on their spectral shapes: Gaussian, double-horned, and flat-topped. The
sources were not spatially extended. The velocity width, peak flux, and position of each
synthetic source were chosen randomly, and were drawn from a uniform parent distribution
that spans the range 20 to 650 kms™" in W, the range 20 to 130 mJy in S, and the range
300 to 10000 kms™! in velocity. Care was taken not to place synthetic sources on top of real
sources. This was done by using the results of an automatic galaxy finding algorithm that
was run prior to the insertion of the synthetic sources. A total of 1200 synthetic sources
were inserted in the HIPASS data cubes, with approximately equal numbers of each of the
three profile types.

In Fig. 1 we show a greyscale representation of the completeness of the HiPASS sample
in the S,, W plane and in the S}, Sip; plane, where S, is the peak flux density in Jy, W

1. and Sj, is the integrated flux in Jykms™!. The completeness

is velocity width in kms™
in these plots is simply determined by calculating D, the fraction of fake sources that is

recovered in each bin:

D(Sp, W) = Neee® (Sp, W) [N™(S,, W). (1)

rec

In order to calculate the completeness as a function of one parameter, we need to integrate

© 2004 RAS, MNRAS 000, 2-23
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Figure 1. Bivariate completeness in the Sp, W plane and the Sp, Sint plane. Darker colors correspond to higher completeness.
The contours indicate completeness levels of 50, 75, and 95 per cent (from left to right).

along one of the axes, and apply a weighting to account for the varying number of sources

in each bin. Put differently, the completeness C' is the number of detected real sources N

divided by the total number of ¢rue sources in each bin, which we estimate with N/D. For

example, the completeness as a function of S, determined from the S,, W matrix is given

by

() = g u MO @
w=0 P P

This weighting corrects for the fact that the parameter distribution of the synthetic sources

might be different from that of the underlying real galaxy distribution. Similarly, C(W) can
be determined by integrating over S, and C(Siy) can be determined by integrating over a
Sp, Sint matrix. Hereafter, we refer to C' as the differential completeness since it refers to the
completeness at a certain value of Sp, Sing, or W.

It is often convenient to calculate the cumulative completeness C“™. For example,
C™(S,) is the completeness for all sources with peak fluxes larger than S,:
_ TES TR NS, W)

DY S (S, W)/D(St, W)

C(Sp) (3)

3.1 Results

Fig. 2 shows the result of this analysis, the circles show the differential completeness as a

function of S,, Wsp, and Sing, and the triangles show the cumulative completeness. Error

© 2004 RAS, MNRAS 000, 2-23
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Figure 2. Completeness of HICAT as measured from the detection rate of synthetic sources. Solid circles show the differential
completeness and triangles the cumulative completeness. The solid lines are error function fits to the points, with the fit
parameters given in Table 1. Error bars indicate 68 per cent confidence levels.

Table 1. Completeness

parameter completeness C=095 C=0.99
Sp (mJy) erf[0.028(Sp — 19)] 68 84
Sing (Jy kms™1) erf[0.22(Sing — 1.1)] 7.4 9.4

Sp(mJy), Sins(Jy kms™1t)  erf[0.036(Sp — 19)]erf[0.36(Sing — 1.1)]

bars indicate 68 per cent confidence levels and are determined by bootstrap re-sampling?.
We fit the completeness as a function of S, and Siy with error functions (erf), which are
indicated by solid lines. The best-fitting error functions are given in Table 1, along with the

completeness limits at 95 and 99 per cent.

Clearly, there is not a sharp segregation between detectable and not detectable for any
of the three parameters under examination. The completeness is a slowly varying function,
which illustrates the complexity of the detectability of H 1 signals. However, all curves reach
the 100 per cent completeness level. This indicates that our source finding algorithms do

not miss any high signal-to-noise sources, and our system of checking all potential sources

2 From the parent population of N synthetic sources, N sources are chosen randomly, with replacement. This is repeated 200
times and for each of these 200 re-generated samples the completeness C’ is calculated following equations 2 and 3. The lo
upper and lower errors on the completeness are determined by measuring from the distribution of C’ the 83.5% and 16.5%

percentiles

© 2004 RAS, MNRAS 000, 2-23
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Figure 3. Bivariate parameter distribution of HiCAT. Darker colors correspond to higher source densities. Analytical approxi-
mations of the completeness limits at 50, 75, and 95 per cent (from left to right) are indicated by curves.

for possible confusion with RFI is sufficiently conservative that it does not cause many false
negatives.

Although the above derived expressions are useful for understanding the completeness
of HicAT, they do not allow us to calculate completeness levels for individual sources. For
many purposes, for example in evaluating the H1 mass function, it is convenient to know
what the completeness of the catalogue is for a source with specific parameters. We tested
different fitting functions and found that the completeness can be fitted satisfactorily using

two parameters:
C(Sp, Sint) = erf[0.036(S, — 19)]erf[0.36(Sin; — 1.1)]. (4)

This provides an accurate fit to the completeness matrices shown in Fig. 1, and also repro-
duces the one-parameter fits shown in Fig. 2, after the proper summation given Eq. 2 has
been applied. In Fig. 3 the 50, 75, and 95 per cent completeness limits calculated using Eq. 4
are drawn on top of the parameter distribution of the full HICAT data. The contours in the
Sp, W-plane are calculated by assuming W = 1.22S;,,/S;,, which provides a good fit to the
data. Unfortunately, the regions of parameter space that are most densely populated are
severely incomplete, as is generally true for samples that do not have a sharp completeness
limit. By cutting HICAT at the 95 (99) per cent completeness limit, the sample is reduced

to 2209 (1678) sources.

© 2004 RAS, MNRAS 000, 2-23
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3.2 Verification of completeness limits

Among blind extragalactic H1 surveys, HIPASS is unique in the sense that it is fully noise-
limited. Surveys such as AHISS or the ADBS are partly bandwidth-limited, which means
that the brightest galaxies in the sample can only be detected out to the distance limit set by
the restricted bandwidth of the receiving system. Since HIPASS is a relatively shallow survey
and was conducted with a large bandwidth (64 MHz), even the detection of the most Hr1
massive galaxies is noise-limited. The distance distribution N (D) of HICAT galaxies drops to

zero at large distances, before the maximum distance of 12,700 kms~!

is reached (see paper
I). This property of HICAT enables the use of standard techniques to verify the completeness
limits determined in Section 3.1. For bandwidth-limited samples these methods would not
give meaningful results.

Rauzy (2001) recently suggested a new tool to assess the completeness for a given ap-
parent magnitude in a magnitude-redshift sample. This method is easily adapted to an H1-
selected galaxy sample. Essentially, the method compares the number of galaxies brighter
and fainter than every galaxy in the sample. In the case of a homogeneously distributed
sample in space, the method is essentially the same as a V/V.x test, but by design Rauzy’s

method is insensitive to structure in redshift space. The method is based on the definition

of a random variable ¢, which for a H1-selected sample can be defined as
@(MHI)
= oMim(z))’ (5)
(Mg (Z)]
where © is the cumulative H1 mass function, Z is a ‘distance modulus’ defined as Z =

log Sint — log Myr, and Mllﬁn(Z ) is the limiting H1 mass at the distance corresponding with

Z. An unbiased estimate of ( for object 7 is given by
T

P = 6
G (6)
where r; is the number of objects with My > My and Z < Z;, and n; is the number
of objects for which My; > Myuri™(Z;) and Z < Z;. The values of ¢; should be uniformly

distributed between 0 and 1. Now a quantity 7 can be defined as
Ngal

_ X (G —1/2) 7

- N, al ( )
(i Vi)

where V; is the variance of (;, defined as V; = (n; — 1)/[12(n; + 1)]. The completeness of

the sample can now be estimated by computing 7> on truncated subsamples according to
a decreasing Siy;. For statistically complete subsamples the quantity 7 has an expectation
value of zero and unity variance. The completeness limit is found when 7 drops system-

© 2004 RAS, MNRAS 000, 2-23
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Figure 4. Test of completeness limits in HICAT. The top panel shows the T estimator (see text) as a function of integrated
flux. The completeness limit is reached at Siy, = 9.5 Jy kms—1, where T = —2. The bottom panel shows the number of sources

as a function of Sj,;. The fitted line corresponds to the expected distribution dN Si;f/ 2dSint for a flux-limited sample. The
completeness limit of Sjpy = 9.5 Jykms~! is indicated by a vertical dashed line.

atically to negative values, where Tz = —2 (—3) indicates a 97.7 (99.4) per cent confidence
level. In the top panel of Fig. 4 we plot the result of the Tz completeness test. From this we
derive that the completeness limit of the sample is SEm = 9.5 Jykms ! at the 97.7 per cent
confidence level. This limit is very close to what was found in the previous section, where
we calculated the completeness based on the detection rate of synthetic sources.

As a final verification we plot in the bottom panel of Fig. 4 the number of galaxies as a
function of Si,;. The dotted line shows a dN S. 5/ 2dSint distribution expected for a flux-

int

limited sample, and is scaled vertically so as to fit the right hand side of the curve. Deviations

! which is consistent with

from the curve start to become apparent at Si,; = 10 Jykms™
the more accurate determination from the 7z method. Unlike the Tz method, this method

of plotting dN as a function of Sj, is sensitive to the effects of large scale structure.

3.3 Completeness as a function of sky position

Hipass achieves 100 per cent coverage over the whole southern sky and has a mostly uniform
noise level of 13.0 mJy beam™!. However, in some regions of the sky the noise level is elevated
due to the presence of strong radio continuum sources. In Fig. 5 the median noise level of
every HIPASS cube is shown. These noise levels are determined robustly using the estimator
o = 5(m/2)"/?, where s is the median absolute deviation from the median. This estimator is
much less sensitive to outliers than the straight rms calculation, and provides an accurate

© 2004 RAS, MNRAS 000, 2-23



HICATII 11

87
10851451 44,

18
5]
43

6105
1(

rms noise [mJy/beam]

Figure 5. Median noise levels in the southern Hipass cubes. The south celestial pole is in the center, RA=0 is on top, and
increases counter-clockwise. The scale bar shows the noise levels in mJy beam—!. The horizontal bright band corresponds to
b = 0, where the noise level is elevated. The numbers correspond to the numbers of the 8° x 8° Hipass cubes.

estimate of the rms of the underlying distribution, provided that this distribution is nearly-
normal. The average cube noise level is elevated more than 10 per cent over just 14.8 per
cent of the sky, and elevated more than 20 per cent over 6.2 per cent of the sky. A region
of elevated noise levels can be clearly identified in Fig. 5, where the highest noise values
go up to 22 mJy beam~!. This region corresponds very closely to Galactic Plane, where the
strongest radio continuum sources are located and where the density of continuum sources
is highest.

It is not straightforward to assess accurately how the completeness is affected by varying
noise levels. Since a significantly different noise level is only observed over a small region of
the sky, the number of synthetic sources in these regions is too small to calculate the com-
pleteness limits accurately. Furthermore, the region of highest noise levels coincidently lies
in the direction of the Local Void, where the detection rate of sources is naturally depressed.
Therefore, the T method, or a simple V/V},.x method are also unreliable estimators of the
completeness here. In the absence of empirical estimators, we make the reasonable assump-
tion that the detection efficiency scales linearly with the local noise level, which means that
the completeness C(S,) can be replaced with C'(S, x 13.0/0) in regions of atypical noise
levels. This implies that the 95 per cent completeness level, which is normally reached at

© 2004 RAS, MNRAS 000, 2-23
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Figure 6. Completeness of HICAT as a function of profile shape. Solid circles indicate Gaussian profiles, open boxes double-
horned profiles, and crosses flat-topped profiles. The points for the Gaussian and flat-topped profiles are offset horizontally to
avoid overlapping of points.

71 mJy, is reached at 85 mJy when the noise level is elevated by 20 per cent. The complete-

ness as a function of Wsy is probably not affected by a slight increase in noise level. The

completeness as a function of Siy, is adjusted similar to C(Sp).

3.4 Completeness as a function of profile shape

In order to test the detection efficiency of various profile shapes, the synthetic sources were
divided into three groups: Gaussian, double-horned, and flat-topped. We perform the com-
pleteness analysis for each of these subsamples individually, and show the results in Fig. 6.
Within the errors, the detection efficiency as a function of peak flux is independent of profile
shape. However, C'(Wso) and C(Siy) are somewhat depressed for double-horned profiles with
respect to Gaussian and flat-topped profiles. The reason for this is probably that low signal-
to-noise double-horned profiles are easily mistaken for two noise peaks, whereas Gaussian
and flat-topped profiles have their flux distributed over adjoining channels, which together

stand out from the noise more clearly.

3.5 Completeness as a function of velocity

In Fig. 6 of Paper I we show that the velocity distribution of the initial sample of potential
HicAT detections shows strong peaks at known RFI frequencies and frequencies correspond-
ing to hydrogen recombination lines. This might give rise to the concern that the complete-

© 2004 RAS, MNRAS 000, 2-23
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ness of HICAT is suppressed at these frequencies. However, in Paper I we show that the
three-dimensional signature of these contaminating signals is sufficiently characteristic that
they can be reliably removed from the catalogue. The final distribution of HICAT velocities
shows no features that correlate with RFI or hydrogen radio recombination line frequencies,
indicating that the completeness is not significantly affected at these frequencies. Unfortu-
nately, we are not able to further substantiate this claim since 1200 uniformly distributed
synthetic sources provide insufficient velocity sampling to study the completeness as function

of velocity in detail.

4 RELIABILITY

The reliability of the sample was determined by re-observing a subsample of sources with
the Parkes Telescope. The aim of the observations was twofold: assessing the reliability of
HicAT as a function of peak flux, integrated flux and velocity width, and removing spurious
detections from the catalogue. The subsample was chosen in such a way that the full range
of HICAT parameters is represented, but preference was given to those detections that have
low integrated fluxes. For every observing session, a sample was created that consisted of
randomly chosen HICAT detections, complemented with detections with low Siy(generally
lower than 8 Jykms™!). At the time of the observations, the observer chose randomly from
these samples. The full range of RA was covered by the observations.

The observations were carried out over five observing sessions between September 2001
and November 2002. They were done in narrow-band mode, which gives 1024 channels

L at z = 0. In this narrow-

over 8 MHz, resulting in a spectral resolution of 1.65 kms™
band correlator setting only the inner 7 beams of the multibeam system are available. An
observing mode was used where the target is placed sequentially in each of the 7 beams and
a composite off-source spectrum is calculated from the other 6 beams. This strategy yields
a noise level 1.85 times lower than standard on-off observations in the same amount of time.
Typical integration times were 15 min. The narrow-band observations yield lower rms noise
levels than standard broad-band multibeam observations. Furthermore, the high frequency
resolution enables better checks of the reality of HICAT sources since narrow signals can be
detected in several independent channels. The data were reduced using the AIPS+-+ packages
LIVEDATA and GRIDZILLA (Barnes et al. 2001), and the detections were parametrized using

standard MIRIAD routines.

© 2004 RAS, MNRAS 000, 2-23
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First, we consider the reliability of the original catalogue, before unconfirmed sources

have been taken out. The fraction of sources that was confirmed is defined as

T(SP:W) gg;f(SPaW)/Négls(SmW)a (8)
where N and NI are the number of confirmed and observed sources, respectively. The

reliability as a function of peak flux S, is the mean of 7', weighted by the number of sources

in each bin:

2w o N(Sp, W) X T (S, W) (9)
2y 2y (Sp. W) ’

and the cumulative reliability is

R(Sp) =

o, spZ‘;‘; o N(S, W) x T(S;, W)
S s Sw NS, W)

Again, analogous methods can be used to measure R(W) and R(Siy). Fig. 7 shows the

R™(S,) = (10)

measured reliability as a function of S, W5, and Si;. The crosses show the differential
reliability, error bars indicate 68 per cent confidence levels and are determined by bootstrap
re-sampling the data 200 times.

As sources that were re-observed but not confirmed were taken out of the catalogue, by
re-observing a subsample of sources we improve the catalogue reliability. Eventually if we
were to re-observe all sources the reliability would rise to 100 per cent. To calculate the
reliability after taking out unconfirmed sources, we have to estimate the erpected number of
real sources, which is the number of confirmed sources plus 7" times the number of sources
that have not been observed.

A final complication arises because a second subsample of sources from HICAT was re-
observed as part of a program to measure accurate velocity widths (Meyer et al. 2004b).
This program also influences the reliability because non-detections were taken out of the
catalogue and detections are marked as ‘confirmed’ in HiCAT. This latter class of sources is

indicated as N3B;.. Now, the expected number of real sources is given by

COII

Nexpreal = Negne + Neont + (N = Negne — Negne) % (Negne/Nabs)- (11)

conf c conf c conf obs

Note that the total number of sources in HICAT, N, excludes all unconfirmed sources. Now,

we can redefine 71" as
T(Spa W) = NeXPreal(Spa W)/N(Spa W), (12)

and equations 9 and 10 can be used to calculate the reliability of HiCAT. The circles and
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Table 2. Reliability

parameter reliability C=095 C=0.99
Sp (mJy) erf[0.040(Sp — 12)] 50 58
Sint (Jy kms—1) erf[0.12(Sing + 6.4)] 5.0 8.2

Sp(mJy), Sing(Jykms™!)  erf[0.045(Sp — 12)]erf[0.20(Sint + 6.4)]

triangles in Fig. 7 show the measured differential and cumulative reliability, respectively. In

total, 1201 sources were observed, of which 119 were rejected.

4.1 Results

The overall reliability is very high (95 per cent), partly because the catalogue was cleaned
up considerably by re-observing many sources and rejecting unconfirmed sources from the

catalogue. The reliability drops significantly below S, < 50 mJy and Sy < 5 Jy kms™

, and
there is possibly a reduced reliability around W5y = 350 km s~!. This latter feature may be
related to the confusion of real H1 emission signals with ripples in the spectral passband.
We fit the reliability as a function of peak flux and integrated flux with error functions, the
parameters of which are presented in Table 2. The 99 per cent reliability level is reached at
S, = 58 mJy and Sy, = 8.2 Jy kms '. If sources with a HICAT comment ‘2=have concerns’
are removed from the sample, the overall reliability rises to 97 per cent. Similarly to the
results found for the completeness levels, we find that the reliability of individual sources

can be determined satisfactorily as a function of S, and Sin;. The functional form is given

in Table 2.

5 PARAMETER UNCERTAINTIES

A detailed description of all measured parameters in HICAT is presented in Paper 1. Here
we discuss the error estimates of the most important parameters: peak flux, integrated flux,
velocity width, heliocentric recessional velocity (cz) and sky position. Other authors have
discussed analytical approaches to estimating uncertainties on H1 21-cm parameters (e.g.,
Schneider et al. 1990, Fouqué et al. 1990, Verheijen & Sancisi 2001), but for HiCAT sufficient
comparison data are available to measure the errors empirically. In this analysis we make use
of the synthetic source parameters and the narrow-band observations to determine the total
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Figure 7. Reliability of HiICAT measured from Parkes follow-up observations. Solid circles show the differential reliability,
triangles the cumulative reliability. The crosses show the reliability of HICAT before unconfirmed sources have been taken out.
The solid lines are error function fits to the points, with the fit parameters given in Table 2. Error bars indicate 68 per cent
confidence levels.

observational errors on the parameters. The data published in the Hipass BGC (Koribalski
et al. 2004) are used to establish what fraction of the error is caused by the parametrization
procedure.

We assume that the error ox on parameter X can be satisfactorily described by
O'(X) = clyn + Co, (].3)

where Y is a parameter that can be equal to X or any other parameter, and n, ¢y, and ¢
are constants. There is no physical basis for this analytical description of the errors, but we
find later that Eq. 13 provides satisfactory fits to the measured parameter uncertainties. In
the following we determine how each o(X) depends on all parameters.

When comparing parameters from different data sets, we know that the measured rms
scatter on the difference between HICAT parameter X and parameter X from data set Z is

given by
O-(X)IQneas = O-(X)%-HCAT + O-(X)%’ (14)

where (X )meas is the measured rms scatter on Xyicar — Xz, 0(X)uicar is the error in
the HICAT parameter, and o(X)z is the error in data set Z. The latter two parameters are

unknown, but we can make the simplifying assumption that

rmsgy,

O'(X)Z :O'(X)chAT (15)

I'MSHICAT

where rmsy denotes the rms noise in the survey on which catalogue Z is based.
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Figure 8. Comparison between HICAT and synthetic source parameters. The left panels show the histograms of the differences,
which are fitted by Gaussian profiles for which the parameters are indicated in the top left corners. The right panels show the
differences as a function of the measured HICAT parameters. The points and error bars show the zero-points and the widths
of the fitted Gaussians (inner and outer error bars indicate 1o and 3o, respectively). The dashed lines are the best-fitting
analytical descriptions of 30(X).

5.1 Error estimates from comparison with synthetic sources

First, we compare the HICAT parameters with those of the synthetic sources. This com-
parison is particularly useful for estimating errors because the synthetic source parameters
are noise free, which means that (X )., = 0 for all parameters. Therefore, the measured
0 (X )meas is equal to o(X)micar, which is the parameter of interest. In Fig. 8 we plot the
difference between the measured HICAT parameters and parameters of the synthetic sources
that were inserted into the data. The left panels show the difference histograms, fitted by
Gaussian profiles. Parameters for these are indicated in the top left corners. The right panels
show the differences as a function of the measured HICAT parameters. The points and error
bars show the zero-points and widths of the fitted Gaussians (inner and outer error bars
indicate 1o and 30, respectively) in different bins. We prefer Gaussian fitting to calculating
straight rms values because this latter estimator is much more sensitive to outliers. In the
right panels we indicate the best-fitting relations for 30(X) by dashed lines.

© 2004 RAS, MNRAS 000, 2-23



18 M.A. Zwaan et al.

As is expected, the error on S, is independent of peak flux. The measurement error is
just determined by the 13.0 mJy rms noise in the spectra, but lowered to a measured value
of 11.0 mJy due to the fact that more than one channel may contribute to the measurement
of Sp. The error on S}, is not found to be dependent on any of the other parameters, so we
adopt a fixed value of ¢(S,) = 11.0mJy. The other effect than can be seen in this panel is
that there is a global offset of 5.0 mJy in the measured S, with respect to the peak flux of
the synthetic sources. This effect, which in Zwaan et al. (2003) is referred to as the ‘selection
bias’, arises because after adding noise to a spectrum the measured peak flux density is
generally an overestimation of the true peak flux density.

The error in S;,; is found to be dependent on Sj,; only, and can be satisfactorily fitted
with ¢; = 0.5, n = 1/2. This implies that o(Siy) = 1.5 Jykms™ (or 16 per cent) at the
99 per cent completeness limit of 9.4 Jy kms~!. Fouqué et al. (1990) derive that o (Siy) is
dependent on both Si and S, as 0(Siy) x SintlﬂSp_l/Q. Our analysis shows that for the
HicAT data o(Si,;) can be described satisfactorily as a function of Sj,; only. The error in
Sint Will be the dominant factor in the error on the H1 mass, except for the nearest galaxies
for which peculiar velocities contribute significantly to the uncertainty in H1 mass.

The error in Wy is not clearly dependent on any other parameter, so we adopt a constant
o(Wso) = 7.5kms™". It should be noted, however, that there appears to be an excess of points
which is not satisfactorily fitted with a single Gaussian. These outliers are preferentially those
with low peak fluxes, but large velocity widths. Larger uncertainties in the measurements of
velocity width occur with broad, low signal-to-noise profiles, because the edges of the profiles
can not always be chosen unambiguously. Approximately one-third of the measurements can
be fitted with a Gaussian with o = 25kms™!.

We find that the error on recessional velocity is dependent on S, only, with higher peak
flux detections having lower errors on the measured Vje. The error bars can be fitted with
parameters ¢; = 1.0 x 10*, n = —2 and ¢, = 5. Fouqué et al. (1990) find for their data that
n = —1, but incorporate an additional dependence on the steepness of the H1 profile.

In Fig. 9 the top panel shows the difference between position of the inserted synthetic
sources and the fitted position after parametrization. The lower two panels show the position
differences as a function of Sj,;. The positional accuracy in RA is fitted with ¢; = 5.5, n = —1,
co = 0.45, and the accuracy in Dec is fitted with ¢; =4, n = —1, ¢o = 0.4. These numbers
imply that the positional accuracy at the 99 per cent completeness limit is 1/05 in RA,
and 0/82 in Dec. The difference between these two numbers arises because the HIPASs data
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Figure 9. The top panel shows the difference between the position of the inserted synthetic sources and the fitted position
after parametrization, in arcmin. The lower panels are similar to those in Fig. 8.

Table 3. Parameter uncertainties

parameter error o at C =0.99
a(Sp) 11.0mJy 11.0 mJy
(Sint) 0.5S'i1n/t2 Jykms—! 1.5Jykms~!
o(Wso) 7.5kms1 7.5kms1
(Vael) 1.0 x 104552 + 5kms™!  6.4kms~!
o(RA) 5.&'>S.i;t1 + 0.45 arcmin 1.05 arcmin
o(dec) 4S; -+ 0.4arcmin 0.82 arcmin

are more regularly sampled in the Dec direction (see Barnes et al. 2001). This positional
accuracy agrees very well with the results found from HiCAT matching with the 2MASS

Extended Source Catalogue (Jarret et al. 2003, see Meyer et al. 2004b).

5.2 Verification of error calculations with Parkes follow-up observations

Although the comparison with noise-free parameters in the previous subsection is a useful
method of estimating the errors on HICAT parameters, it is important to verify these results
with independent measurements. Such measurement are available through our program of
Parkes narrow-band (NB) follow-up observations, which was described in Section 4. These
follow-up observations are preferentially targeted at sources with low integrated fluxes, but
the sample is sufficiently large to make a meaningful parameter comparison over a large
dynamic range. The NB observations were carried out independently from the HIPASS pro-
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Figure 10. Similar to Fig. 8, but showing the comparison between parameters from HICAT and narrow-band follow-up obser-
vations.

gram and consisted of pointed observations instead of the active scanning used for HIPASS.

1 1

The spectral resolution of the NB observations was 1.65 kms™", compared to 13.2 kms™
for HipAss, but the data used in this section were smoothed to the HIPASS resolution. The
NB profiles were parametrized with the same MIRIAD software used for HICAT.

In Fig. 10 the differences between HICAT parameters and those from follow-up observa-
tions is presented. The dashed lines in the right-hand panels are not fits to the error bars,
but are the equations given in Table 3, converted using Eq. 14 and Eq. 15. Here we have
adopted rmsyg = 7mJy, which is the mean rms noise in the follow-up spectra after smooth-
ing these to the HIPASS resolution. The converted error estimates provide good fits to the
measured scatter, indicating that the equations in Table 3 can be used to find reliable errors
on HICAT parameters. We note that the errors on the peak and integrated flux include the
uncertainties in the calibration of the flux scale, except for errors in the Baars et al. (1977)

flux scale.
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5.3 Parameter comparison with Bright Galaxy Catalogue

The Bright Galaxy Catalogue (BGC, Koribalski et al. 2004) consists of the 1000 HipAss
galaxies with the highest peak fluxes and is assembled and parametrized independently
from HICAT, but is extracted from the same data cubes. By comparing the HICAT parame-
ters with those from the BGC, it can be determined what fraction of the error on the HICAT
parameters is determined by the parametrization procedure (internal error), and what frac-
tion is caused by noise in the HiPAss data (external error). This comparison is particularly
interesting because generally in the parametrization of a 21-cm emission line profile a num-
ber of choices are made, which could differ between the persons doing the parametrization.
The biggest uncertainty is probably the fitting and subtracting of the spectral baseline.
Structure in the baseline is caused by ringing associated with strong Galactic H1 emission
and continuum emission that can produce standing wave patterns in the telescope structure.
For the BGC, the spectral baselines were fitted with polynomials, of which the order is a
free parameter, whereas HICAT baselines were fitted with Gaussian smoothing, where the
dispersion is a free parameter (see paper I). Another uncertainty is introduced with the
choice of the velocity extrema of line profiles, between which the flux is integrated.

In Fig. 11 the comparison with the BGC is shown. The difference between HicAT and
BGC parameters is very small. There are no systematic trends, except for a slight excess of
points with high values of Sy (HICAT) — Syt (BGC) at large values of Sj,. This excess arises
because HICAT and the BGC use different criteria to define what is an extended source. This
leads to more sources in HICAT being fitted as extended, which generally results in higher
values of Si. Overall, we find that the parametrization error contributes only marginally
to the total error, with a contribution of 8 per cent to ¢(S;), 13 per cent to o(Sint), and 1
per cent to o(Wjso). The contribution to o(V4e) is not uniquely defined because it depends
on S, but on average it is 13 per cent. The rms scatter on the difference between the BGC
and HIcAT values of Vi is only 4.8 kms™! at the 99 per cent completeness limit and drops

to 2 kms ! for brighter sources.

6 SUMMARY

The full catalogue of extragalactic HIPASs detections (HICAT) has now been released to the
public (Meyer et al. 2004a, paper I). In the present paper we have addressed in detail the
completeness and reliability of the survey. We present analytical expressions that can be used
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Figure 11. Similar to Fig. 8, but showing the comparison between parameters from HICAT and the Hipass Bright Galaxy
Catalogue (Koribalski et al. 2004).

to approximate the completeness and reliability. We find that HICAT is 99 per cent complete
at a peak flux of 84 mlJy and an integrated flux of 9.4 Jykms . The overall reliability is
95 per cent, but rises to 99 per cent for sources with peak fluxes > 58 mJy or integrated
flux > 8.2 Jykms~!. Expressions are derived for the uncertainties on the most important
HicAT parameters: peak flux, integrated flux, velocity width, and recessional velocity. The
errors on HICAT parameters are dominated by the noise in the HiPAss data, rather than by

the parametrization procedure.
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